(1)I(2n) = ∫(0->π/2) (cosx)^(2n) dxI6=∫(0->π/2) (cosx)^6 dx=∫(0->π/2) (cosx)^5 dsinx=[sinx.(cosx)^5]|(0->π/2) +5∫(0->π/2) (sinx)^2.(cosx)^4 dx=5∫(0->π/2) (sinx)^2.(cosx)^4 dx=5∫(0->π/2) [ 1-(cosx)^2].(cosx)^4 dx6I6 = 5I4I6 = (5/6)I4 =(5/6)(3/4)(1/2)I0=(5/16) ∫(0->π/2) dx=(5/32)πie∫(0->π/2) (cosx)^6 dx=(5/32)π(2)f(x) =∫(1->√x) e^(-t^2) dt=>f(1) = 0两边取导f'(x) = [1/(2√x)] e^(-x)--------∫(0->1) f(x)/√x dx=2∫(0->1) f(x)d√x =2[√x.f(x) ] |(0->1) -2∫(0->1) √x.f'(x)dx=0 -2∫(0->1) √x.f'(x)dx=-2∫(0->1) √x.{ [1/(2√x)] e^(-x) }dx=-∫(0->1) e^(-x) dx=[e^(-x)]|(0->1)=e^(-1) -1