2024-11-30 06:29:18
一、课程设置不同
1、大数据专业将从大数据应用的三个主要层面(即数据管理、系统开发、海量数据分析与挖掘)系统地帮助企业掌握大数据应用中的各种典型问题的解决办法。
包括实现和分析协同过滤算法、运行和学习分类算法、分布式Hadoop集群的搭建和基准测试、分布式Hbase集群的搭建和基准测试、实现一个基于、Mapreduce的并行算法、部署Hive并实现一个的数据操作等等,实际提升企业解决实际问题的能力。
2、计算机专业:计算机应用基础、应用文写作、数学、英语、德育、电工与电子技术、计算机网络技术、C语言、计算机组装与维修、企业网安全高级技术、企业网综合管理、windows server 2008操作系统。
局域网组建、Linux服务器操作系统、网络设备与网络技术(主要学习思科、华为公司设备的配置、管理、调试)、SQL Server、网络综合布线技术、CAD绘图等。
二、专业定位不同
1、计算机专业是计算机硬件与软件相结合、面向系统、侧重应用的宽口径专业。通过基础教学与专业训练,培养基础知识扎实、知识面宽、工程实践能力强,具有开拓创新意识,在计算机科学与技术领域从事科学研究、教育、开发和应用的高级人才。
2、大数据采集与管理专业是从大数据应用的数据管理、系统开发、海量数据分析与挖掘等层面系统地帮助企业掌握大数据应用中的各种典型问题的解决办法的专业。
三、培养目标不同
计算机专业:
1、掌握电子技术和计算机组成与体系结构的基本原理、分析方法和实验技能,能从事计算机硬件系统开发与设计。
2、掌握程序设计语言、算法与数据结构、操作系统以及软件设计方法和工程的基本理论、基本知识与基本技能,具有较强的程序设计能力,能从事系统软件和大型应用软件的开发与研制。
3、掌握并行处理、分布式系统、网络与通信、多媒体信息处理、计算机安全、图形图象处理以及计算机辅助设计等方面的基本理论、分析方法和工程实践技能,具有计算机应用和开发的能力。
4、掌握计算机科学的基本理论,具有从事计算机科学研究的坚实基础。
大数据专业:
1、掌握大数据与Hadoop生态系统。详细介绍分析分布式文件系统HDFS、集群文件系统ClusterFS和NoSQL Database技术的原理与应用;分布式计算框架Mapreduce、分布式数据库HBase、分布式数据仓库Hive。
2、掌握关系型数据库技术。详细介绍关系型数据库的原理,掌握典型企业级数据库的构建、管理、开发及应用。
3、掌握分布式数据处理。详细介绍分析Map/Reduce计算模型和Hadoop Map/Reduce技术的原理与应用。
4、掌握海量数据分析与数据挖掘。详细介绍数据挖掘技术、数据挖掘算法_Minhash, Jaccard and Cosine similarity,TF-IDF数据挖掘算法_聚类算法;以及数据挖掘技术在行业中的具体应用。
扩展资料:
大数据主要的三大就业方向:大数据系统研发类人才、大数据应用开发类人才和大数据分析类人才。
十大职位:
一、ETL研发;
二、Hadoop开发;
三、可视化(前端展现)工具开发;
四、信息架构开发;
五、数据仓库研究;
六、OLAP开发;
七、数据科学研究;
八、数据预测(数据挖掘)分析;
九、企业数据管理;
十、数据安全研究。
参考资料: