1.由题意得,f(x)过(0,0),(-2,0),(-1,-1)设f(x)=ax^2+bx4a-2b=0a-b=-1a=1,b=2所以f(x)=x^2+2x由于函数g(x)与f(x)的图像关于原点对称则f(x)=-g(-x),g(-x)=-x^2-2x所以g(x)=-x^2+2x2.h(x)=x^2+2x-入(-x^2+2x)=(入+1)x^2+(2-2入)x这里分类讨论,当入>-1时,-b/2a=入-1/入+1<=-1,得-1<入<=0当入<-1时,-b/2a=入-1/入+1>=1,得入<-1当入=-1时,h(x)=4x满足条件综上所述,入<=0