2024-09-18 00:00:31
∫(0->2) x/(x^2-2x+2) dx
consider
x^2-2x+2 = (x-1)^2 +1
let
x-1 = tanu
dx= (secu)^2 . du
x=0, u=-π/4
x=2, u=π/4
∫(0->2) x/(x^2-2x+2) dx
=∫(-π/4->π/4) (tanu +1) du
= [-ln|cosu| + u]|(-π/4->π/4)
=π/2
2024-09-18 00:01:37
我刚发现这道题的答案没有错_(:з」∠)_那个分母是有平方的,到了后面的arctan哪里就出不来了_(:з」∠)_
2024-09-18 00:01:49
2024-09-18 00:00:53