当我们的调查问卷在把调查数据拿回来后,我们该做的工作就是用相关的统计软件进行处理,在此,我们以spss为处理软件,来简要说明一下问卷的处理过程,它的过程大致可分为四个过程:定义变量、数据录入、统计分析和结果保存.下面将从这四个方面来对问卷的处理做详细的介绍.Spss处理:第一步:定义变量大多数情况下我们需要从头定义变量,在打开SPSS后,我们可以看到和excel相似的界面,在界面的左下方可以看到Data View, Variable View两个标签,只需单击左下方的Variable View标签就可以切换到变量定义界面开始定义新变量。在表格上方可以看到一个变量要设置如下几项:name(变量名)、type(变量类型)、width(变量值的宽度)、decimals(小数位) 、label(变量标签) 、Values(定义具体变量值的标签)、Missing(定义变量缺失值)、Colomns(定义显示列宽)、Align(定义显示对齐方式)、Measure(定义变量类型是连续、有序分类还是无序分类).我们知道在spss中,我们可以把一份问卷上面的每一个问题设为一个变量,这样一份问卷有多少个问题就要有多少个变量与之对应,每一个问题的答案即为变量的取值.现在我们以问卷第一个问题为例来说明变量的设置.为了便于说明,可假设此题为:1.请问你的年龄属于下面哪一个年龄段( )? A:20—29 B:30—39 C:40—49 D:50--59那么我们的变量设置可如下: name即变量名为1,type即类型可根据答案的类型设置,答案我们可以用1、2、3、4来代替A、B、C、D,所以我们选择数字型的,即选择Numeric, width宽度为4,decimals即小数位数位为0(因为答案没有小数点),label即变量标签为“年龄段查询”。Values用于定义具体变量值的标签,单击Value框右半部的省略号,会弹出变量值标签对话框,在第一个文本框里输入1,第二个输入20—29,然后单击添加即可.同样道理我们可做如下设置,即1=20—29、2=30—39、3=40—49、4=50--59;Missing,用于定义变量缺失值, 单击missing框右侧的省略号,会弹出缺失值对话框, 界面上有一列三个单选钮,默认值为最上方的“无缺失值”;第二项为“不连续缺失值”,最多可以定义3个值;最后一项为“缺失值范围加可选的一个缺失值”,在此我们不设置缺省值,所以选中第一项如图;Colomns,定义显示列宽,可自己根据实际情况设置;Align,定义显示对齐方式,有居左、居右、居中三种方式;Measure,定义变量类型是连续、有序分类还是无序分类。以上为问卷中常见的单项选择题型的变量设置,下面将对一些特殊情况的变量设置也作一下说明.1.开放式题型的设置:诸如你所在的省份是_____这样的填空题即为开放题,设置这些变量的时候只需要将Value 、Missing两项不设置即可.2.多选题的变量设置:这类题型的设置有两种方法即多重二分法和多重分类法,在这里我们只对多重二分法进行介绍.这种方法的基本思想是把该题每一个选项设置成一个变量,然后将每一个选项拆分为两个选项项,即选中该项和不选中该项.现在举例来说明在spss中的具体操作.比如如下一例:请问您通常获取新闻的方式有哪些( )1 报纸 2 杂志 3 电视 4 收音机 5 网络在spss中设置变量时可为此题设置五个变量,假如此题为问卷第三题,那么变量名分别为3_1、3_2、3_3、3_4、3_5,然后每一个选项有两个选项选中和不选中,只需在Value一项中为每一个变量设置成1=选中此项、0=不选中此项即可.使用该窗口,我们可以把一个问卷中的所有问题作为变量在这个窗口中一次定义。到此,我们的定义变量的工作就基本上可以结束了.下面我们要作就是数据的录入了.首先,我们要回到数据录入窗口,这很简单,只要我们点击软件左下方的Data View标签就可以了.第二步:数据录入 Spss数据录入有很多方式,大致有一下几种:1.读取SPSS格式的数据2.读取Excel等格式的数据3.读取文本数据(Fixed和Delimiter)4.读取数据库格式数据(分如下两步)(1)配置ODBC (2)在SPSS中通过ODBC和数据库进行但是对于问卷的数据录入其实很简单,只要在spss的数据录入窗口中直接输入就可以了,只是在这里有几点注意的事项需要说明一下.1. 在数据录入窗口,我们可以看到有一个表格,这个表格中的每一行代表一份问卷,我们也称为一个个案.2. 在数据录入窗口中,我们可以看到表格上方出现了1、2、3、4、5…….的标签名,这其实是我们在第一步定义变量中,我们为问卷的每一个问题取的变量名,即1代表第一题,2代表第二题.以次类推.我们只需要在变量名下面输入对应问题的答案即可完成问卷的数据录入.比如上述年龄段查询的例题,如果问卷上勾选了A答案,我们在1下面输入1就行了(不要忘记我们通常是用1、2、3、4来代替A、B、C、D的).3.我们知道一行代表一份问卷,所以有几分问卷,就要有几行的数据.在数据录入完成后,我们要做的就是我们的关键部分,即问卷的统计分析了,因为这时我们已经把问卷中的数据录入我们的软件中了.第三步:统计分析 有了数据,可以利用SPSS的各种分析方法进行分析,但选择何种统计分析方法,即调用哪个统计分析过程,是得到正确分析结果的关键。这要根据我们的问卷调查的目的和我们想要什么样的结果来选择.SPSS有数值分析和作图分析两类方法.1.作图分析:在SPSS中,除了生存分析所用的生存曲线图被整合到Analyze菜单中外,其他的统计绘图功能均放置在graph菜单中。该菜单具体分为以下几部分::(1)Gallery:相当于一个自学向导,将统计绘图功能做了简单的介绍,初学者可以通过它对SPSS的绘图能力有一个大致的了解。(2)Interactive:交互式统计图。(3)Map:统计地图。(4)下方的其他菜单项是我们最为常用的普通统计图,具体来说有: 条图 散点图 线图 直方图 饼图 面积图 箱式图 正态Q-Q图 正态P-P图 质量控制图 Pareto图 自回归曲线图 高低图 交互相关图 序列图 频谱图 误差线图 作图分析简单易懂,一目了然,我们可根据需要来选择我们需要作的图形,一般来讲,我们较常用的有条图,直方图,正态图,散点图,饼图等等,具体操作很简单,大家可参阅相关书籍,作图分析更多情况下是和数值分析相结合来对试卷进行分析的,这样的效果更好.2.数值分析:SPSS 数值统计分析过程均在Analyze菜单中,包括:(1)、Reports和Descriptive Statistics:又称为基本统计分析.基本统计分析是进行其他更深入的统计分析的前提,通过基本统计分析,用户可以对分析数据的总体特征有比较准确的把握,从而选择更为深入的分析方法对分析对象进行研究。Reports和Descriptive Statistics命令项中包括的功能是对单变量的描述统计分析。Descriptive Statistics包括的统计功能有:Frequencies(频数分析):作用:了解变量的取值分布情况Descriptives(描述统计量分析):功能:了解数据的基本统计特征和对指定的变量值进行标准化处理Explore(探索分析):功能:考察数据的奇异性和分布特征Crosstabs(交叉分析):功能:分析事物(变量)之间的相互影响和关系Reports包括的统计功能有:OLAP Cubes(OLAP报告摘要表):功能: 以分组变量为基础,计算各组的总计、均值和其他统计量。而输出的报告摘要则是指每个组中所包含的各种变量的统计信息。Case Summaries(观测量列表):察看或打印所需要的变量值Report Summaries in Row:行形式输出报告Report Summaries in Columns:列形式输出报告(2)、Compare Means(均值比较与检验):能否用样本均值估计总体均值?两个变量均值接近的样本是否来自均值相同的总体?换句话说,两组样本某变量均值不同,其差异是否具有统计意义?能否说明总体差异?这是各种研究工作中经常提出的问题。这就要进行均值比较。以下是进行均值比较及检验的过程:MEANS过程:不同水平下(不同组)的描述统计量,如男女的平均工资,各工种的平均工资。目的在于比较。术语:水平数(指分类变量的值数,如sex变量有2个值,称为有两个水平)、单元Cell(指因变量按分类变量值所分的组)、水平组合T test 过程:对样本进行T检验的过程单一样本的T检验:检验单个变量的均值是否与给定的常数之间存在差异。独立样本的T检验:检验两组不相关的样本是否来自具有相同均值的总体(均值是否相同,如男女的平均收入是否相同,是否有显著性差异)配对T检验:检验两组相关的样本是否来自具有相同均值的总体(前后比较,如训练效果,治疗效果)One-Way ANOVA:一元(单因素)方差分析,用于检验几个(三个或三个以上)独立的组,是否来自均值相同的总体。(3)、ANOVA Models(方差分析):方差分析是检验多组样本均值间的差异是否具有统计意义的一种方法。例如:医学界研究几种药物对某种疾病的疗效;农业研究土壤、肥料、日照时间等因素对某种农作物产量的影响;不同饲料对牲畜体重增长的效果等,都可以使用方差分析方法去解决(4)、Correlate(相关分析):它是研究变量间密切程度的一种常用统计方法,常用的相关分析有以下几种:1、线性相关分析:研究两个变量间线性关系的程度。用相关系数r来描述。2、偏相关分析:它描述的是当控制了一个或几个另外的变量的影响条件下两个变量间的相关性,如控制年龄和工作经验的影响,估计工资收入与受教育水平之间的相关关系3、相似性测度:两个或若干个变量、两个或两组观测量之间的关系有时也可以用相似性或不相似性来描述。相似性测度用大值表示很相似,而不相似性用距离或不相似性来描述,大值表示相差甚远(5)、Regression(回归分析):功能:寻求有关联(相关)的变量之间的关系在回归过程中包括:Liner:线性回归;Curve Estimation:曲线估计;Binary Logistic: 二分变量逻辑回归;Multinomial Logistic:多分变量逻辑回归;Ordinal 序回归;Probit:概率单位回归;Nonlinear:非线性回归;Weight Estimation:加权估计;2-Stage Least squares:二段最小平方法;Optimal Scaling 最优编码回归;其中最常用的为前面三个.(6)、Nonparametric Tests(非参数检验):是指在总体不服从正态分布且分布情况不明时,用来检验数据资料是否来自同一个总体假设的一类检验方法。由于这些方法一般不涉及总体参数故得名。 非参数检验的过程有以下几个:1.Chi-Square test 卡方检验2.Binomial test 二项分布检验3.Runs test 游程检验4.1-Sample Kolmogorov-Smirnov test 一个样本柯尔莫哥洛夫-斯米诺夫检验5.2 independent Samples Test 两个独立样本检验6.K independent Samples Test K个独立样本检验7.2 related Samples Test 两个相关样本检验8.K related Samples Test 两个相关样本检验(7)、Data Reduction(因子分析)(8)、Classify(聚类与判别)等等以上就是数值统计分析Analyze菜单下几项用于分析的数值统计分析方法的简介,在我们的变量定义以及数据录入完成后,我们就可以根据我们的需要在以上几种分析方法中选择若干种对我们的问卷数据进行统计分析,来得到我们想要的结果.第四步:结果保存 我们的spss软件会把我们统计分析的多有结果保存在一个窗口中即结果输出窗口(output),由于spss软件支持复制和粘贴功能,这样我们就可以把我们想要的结果复制、粘贴到我们的报告中,当然我们也可以在菜单中执行file->save来保存我们的结果,一般情况下,我们建议保存我们的数据,结果可不保存.因为只要有了数据,如果我们想要结果的,我们可以随时利用数据得到结果.总结: 以上便是spss处理问卷的四个步骤,四个步骤结束后,我们需要spss软件做的工作基本上也就结束了,接下来的任务就是写我们的统计报告了.值得一提的是.spss是一款在社会统计学应用非常广泛的统计类软件,学好它将对我们以后的工作学习产生很大的意义和作用.]
旧事酒浓
2024-07-27 06:26:03
第一节 Linear过程 8.1.1 主要功能 调用此过程可完成二元或多元的线性回归分析。在多元线性回归分析中,用户还可根据需要,选用不同筛选自变量的方法(如:逐步法、向前法、向后法,等)。 返回目录 返回全书目录 8.1.2 实例操作 〔例8.1〕某医师测得10名3岁儿童的身高(cm)、体重(kg)和体表面积(cm2)资料如下。试用多元回归方法确定以身高、体重为自变量,体表面积为应变量的回归方程。 儿童编号 体表面积(Y) 身高(X1) 体重(X2) 12345678910 5.3825.2995.3585.2925.6026.0145.8306.1026.0756.411 88.087.688.589.087.789.588.890.490.691.2 11.011.812.012.313.113.714.414.915.216.0 8.1.2.1 数据准备 激活数据管理窗口,定义变量名:体表面积为Y,保留3位小数;身高、体重分别为X1、X2,1位小数。输入原始数据,结果如图8.1所示。 图8.1 原始数据的输入 8.1.2.2 统计分析 激活Statistics菜单选Regression中的Linear...项,弹出Linear Regression对话框(如图8.2示)。从对话框左侧的变量列表中选y,点击Ø钮使之进入Dependent框,选x1、x2,点击Ø钮使之进入Indepentdent(s)框;在Method处下拉菜单,共有5个选项:Enter(全部入选法)、Stepwise(逐步法)、Remove(强制剔除法)、Backward(向后法)、Forward(向前法)。本例选用Enter法。点击OK钮即完成分析。 图8.2 线性回归分析对话框 用户还可点击Statistics...钮选择是否作变量的描述性统计、回归方程应变量的可信区间估计等分析;点击Plots...钮选择是否作变量分布图(本例要求对标准化Y预测值作变量分布图);点击Save...钮选择对回归分析的有关结果是否作保存(本例要求对根据所确定的回归方程求得的未校正Y预测值和标准化Y预测值作保存);点击Options...钮选择变量入选与剔除的α、β值和缺失值的处理方法。 8.1.2.3 结果解释 在结果输出窗口中将看到如下统计数据: * * * * M U L T I P L E R E G R E S S I O N * * * * Listwise Deletion of Missing DataEquation Number 1 Dependent Variable.. YBlock Number 1. Method: Enter X1 X2 Variable(s) Entered on Step Number 1.. X2 2.. X1 Multiple R .94964R Square .90181Adjusted R Square .87376Standard Error .14335Analysis of Variance DF Sum of Squares Mean SquareRegression 2 1.32104 .66052Residual 7 .14384 .02055F = 32.14499 Signif F = .0003 ------------------ Variables in the Equation ------------------Variable B SE B Beta T Sig TX1 .068701 .074768 .215256 .919 .3887X2 .183756 .056816 .757660 3.234 .0144(Constant) -2.856476 6.017776 -.475 .6495 End Block Number 1 All requested variables entered. 结果显示,本例以X1、X2为自变量,Y为应变量,采用全部入选法建立回归方程。回归方程的复相关系数为0.94964,决定系数(即r2)为0.90181,经方差分析,F=34.14499,P=0.0003,回归方程有效。回归方程为Y=0.0687101X1+0.183756X2-2.856476。 本例要求按所建立的回归方程计算Y预测值和标准化Y预测值(所谓标准化Y预测值是指将根据回归方程求得的Y预测值转化成按均数为0、标准差为1的标准正态分布的Y值)并将计算结果保存入原数据库。系统将原始的X1、X2值代入方程求Y值预测值(即库中pre_1栏)和标准化Y预测值(即库中zpr_1栏),详见图8.3。 图8.3 计算结果的保存 本例还要求对标准化Y预测值作变量分布图,系统将绘制的统计图送向Chart Carousel窗口,双击该窗口可见下图显示结果。 图8.4 对标准化Y预测值所作的正态分布图]