2024-05-03 00:31:39
2024-05-03 14:50:35
考点:切线的判定;圆周角定理;相似三角形的判定与性质.
专题:几何综合题.
分析:(1)使AC2=AE•AB成立,则应有△AEC∽△ACB,则应有∠B=∠ACE,则应有∠B对的弧与∠ACE对的弧相等,即点A是CAD的中点;
(2)过点B作直径BF,连接CF,根据圆周角定理及已知可得到∠PBCF=90°,OB是圆O的半径,从而得到PB是圆O的切线.
解答:解:(1)在优弧AB上截取弧AD=弧AC,则有∠B=∠ACD,
∵A=∠A,
∴△AEC∽△ACB.
∴AC:AB=AE:AC.
即AC2=AE•AB.
(2)如图b,过点B作直径BF,连接CF,
∵PB=PE,
∴∠PEB=∠PBE.
∵∠PEB=∠A+∠ACD,∠PBE=∠PBC+∠CBE,∠ACD=∠CBA=∠CBE,
∴∠A=∠PBC.
∵BF是直径,
∴∠BCF=-90°.
∵∠A=∠F,∠F+∠CBF=90°,
∴∠PBC+∠CBF=90°.
∵OB是圆O的半径,
∴PB是圆O的切线.
还行吗?
∵BF是直径,
∴∠BCF=-90°.
∵∠A=∠F,∠F+∠CBF=90°,
∴∠PBC+∠CBF=90°.
∵OB是圆O的半径,
∴PB是圆O的切线.
2024-05-03 09:24:46