初三数学题相似三角形

如图,在三角形ABC中,AB=8cm,BC=16cm,点P从点A开始沿AB边向B点以2m/s的速度移动,点Q从点B开始沿BC边向点C以4m/s的速度移动,如果P,Q分别从A,B同时出发,经几秒钟三角形PBQ与三角形ABC相似?
最新回答
草莓少女自然甜

2024-05-03 00:55:56

1.三角形PBQ相似三角形ABC相似
设经过x秒,则ab/pb=bq/bc
即8/(8-2x)=16/4x
32x=128-32x
64x=128
x=2
2.三角形QBP相似三角形ABC相似
设经过x秒,则ab/qb=pb/cb
即8/16=(8-2x)/4x
32x=128-32x
64x=128
x=2
故为两秒
対妳旳执着ヽ

2024-05-03 11:02:59

很显然由于角ABC=角PBQ,所以如果三角形PBQ与三角形ABC相似,则有以下两种情况:
1. BQ<BP 则根据相似三角形性质可得BA/BC=BQ/BP=8/16=1/2.
令 经过t秒后三角形PBQ与三角形ABC相似,则:
BQ=4*t BP=8-2*t BQ/BP=1/2=(4*t)/(8-2*t )得出8-2*t=8*t t=0.8秒
2. BQ>BP 则根据相似三角形性质可得BA/BC=BP/BQ=8/16=1/2.
此时 BP/BQ=(8-2*t )/(4*t)=1/2 得出4*t=16-4*t t=2秒
所以,综上所述,当t=0.8秒及2秒时,三角形PBQ与三角形ABC相似。
祁梦

2024-05-03 07:15:59

解:分类讨论
1.三角形PBQ相似三角形ABC相似
设经过x秒,则ab/pb=bq/bc
即8/(8-2x)=16/4x
32x=128-32x
64x=128
x=2
2.三角形QBP相似三角形ABC相似
设经过x秒,则ab/qb=pb/cb
即8/16=(8-2x)/4x
32x=128-32x
64x=128
x=2
故为两秒
小晴日记

2024-05-03 02:32:26

有两种情况
设时间为X,则BP为8-2X,BQ为4X
(1)△BPQ∽△BAC
∴BP/AB=BQ/BC=8-2X/8=4x/16
∴x=2
(2)△BPQ∽△BCA
∴BP/BC=BQ/AB=8-2X/16=4X/8
∴x=o.8
综上经2秒或0.8秒时相似