区块链如何找节点方向(区块链节点怎么产生)

有没有人讲详细点的,我想教下,区块链如何找节点方向(区块链节点怎么产生)
最新回答
有奶便是娘

2024-10-24 06:16:14

区块链核心技术-P2P网络

点对点网络是区块链中核心的技术之一,主要关注的方面是为区块链提供一个稳定的网络结构,用于广播未被打包的交易(交易池中的交易)以及共识过的区块,部分共识算法也需要点对点的网络支撑(如PBFT),另外一个辅助功能,如以太坊的消息网络,也需要点对点网络的支持。

P2P网络分为结构化和非结构化网络两类。结构化网络采用类似DHT算法来构建网络结构;非结构化网络是一种扁平的网络,每个节点都有一些邻居节点的地址。

点对点网络的主要职责有维护网络结构和发送信息这两个方面。网络结构要关注的是新节点的加入和网络更新这两个方面,而发送信息包括广播和单播两个方面

如何建立并维护点对点的整个网络?节点如何加入、退出?

网络结构的建立有两个核心的参数,一个是每个节点向外连接的节点数,第二个是最大转发数。

新节点对于整个网络一无所知,要么通过一个中心的服务获取网络中的一些节点去连接,要么去连接网络中的“种子”节点。

网络更新处理当有新节点加入或者节点退出,甚至原来一些节点网络不好,无法连接,过一段时间又活了,等等这些情况。一般通过节点已有的连接来广播这些路由表的变化。需要注意的是,因为点对点网络的特殊性,每个节点的路由表是不一样的(也叫partialview)

广播一般采用泛洪协议,即收到转发方式,使的消息在网络中扩散,一般要采用一些限制条件,比如一条消息要设置最大的转发数,避免网络的过渡负载。

单播需要结构化网络结构支持,一般是DHT,类似于DNS解析的方式,逐跳寻找目标节点地址,之后进行传输,并且更新本地路由表。

要想快速检索信息,有两种数据结构可以使用,一种是树类型,如AVL树、红黑树、B树等;另外一类是hash表。

哈希表的效率比树更高,但是需要占用更多的内存。

信息的表示采用键值对的方式,即一个键对应一个值,我们要查找的是key,值是附着的信息。

哈希表要解决的问题是如何均匀地为每一个key分配一个存储位置。

这里面有两个重点:1.是为key分配一个存储地点,这个分配算法是固定的,保证存储的时候和查找的时候使用同一个算法,不然存进去之后会找不到;2.是均匀地分配,不能有点地方存放数据多,有点放存放数据少。

一般语言里面的hashtable、map等结构使用这个技术来实现,哈希函数可以直接使用取模函数,key%n,这种方式,n代表有多少个地方,key是整数,如果key是其他类型,需要先进行一次哈希,将key转为整数。这种方式可以解决上面的两个需求,但是当n不够大的时候(小于要存储的数据),会产生冲突,一个地方一定会有两个key要存储,这时候,需要在这个地方放一个链表,将分配到同一地点、不同key,顺序摆放。当一个地点放的key太多后,链表的查找速度太慢,要转化为树类型结构(红黑树或者AVL树)。

上面说过,哈希表效率很高,但是占用内容,使用多台机器就可以解决这个限制。在分布式环境中,可以将上述的地点理解为计算机(后面成为节点),即如何将一个key映射到一个节点上,每个节点有一个节点ID,即key-nodeid的映射,这个映射算法也要固定。

这个算法还有一个非常重要的要求,即scalebility,当新节点加入和退出时候,需要迁移的key要尽量少。

这个映射算法有两种典型结构,一个是环形,一个是树形;环形的叫一致性哈希算法,树形的典型叫kademlia算法。

选点算法就是解决key-nodeid的映射算法,形象的来说就是为一个key选择它生命中的她(节点)。

假设我们使用32哈希,那么总共能容纳的key的数据量是2**32,称之为hash空间,把节点的ID映射成整数,key也映射成整数。把key哈希和节点哈希值接的差值的叫做距离(负数的话要取模,不用绝对值),比如一个key的哈希是100(整数表示),一个节点的哈希是105,则这两个的距离是105-100=5。当然使用其他距离表示也可以,比如反过来减,但是算法要固定。我们把key映射(放到)距离他最近的节点上。距离取模的话,看起来就是把节点和key放到一个环上,key归属到从顺时针角度离它最近的节点上。

kademlia算法的距离采用的是key哈希与节点哈希异或计算之后的数值来表示(整数),从左往右,拥有越多的“相同前缀”,则距离越近,越在左边位置不一样,距离越远。

树结构的体现是,将节点和key看成树的节点,这个算法支持的位数是160bit,即20个8字节,树的高度为160,每个边表示一位。

选点的算法和一致性哈希相同,从所有节点中,选择一个距离key距离最小的节点作为这个key的归宿。

由于是在分布式环境中,为了保证高可用,我们假设没有一个中心的路由表,没有这个可以看到全貌的路由表,带来了一些挑战,比如如何发现节点、查找节点?

在P2P网络中,常用的方法是每个节点维护一个部分路由表,即只包含部分节点的路由信息。在泛洪算法中,这些节点上随机的;在DHT算法中,这个路由表是有结构的,维护的节点也是有选择性的。那么如何合理的选择需要维护路由信息的节点呢?

一个朴素的做法是,每一个节点保存比他大的节点的信息,这样可以组成一个环,但是这样做的话,有一个大问题和一个小问题。大问题是,每个节点知道的信息太少(只有下一个节点的哈希和地址),当给出一个key时,它不知道网络中还有没有比它距离这个key距离还短的节点,所以它首先判断key是否属于自己和下一个节点,如果是,那么这个key就属于下一个节点,如果不是就调用下一个节点同样的方法,这个复杂度是N(节点数)。一个优化的方法是,每个节点i维护的其他节点有:i+21,i+22,....i+2**31,通过观察这个数据,发现由近到远,节点越来越稀疏。这样可以把复杂度降低到lgN

每个节点保存的其他节点的信息,包括,从左到右,每一位上与本节点不同的节点,最多选择k个(算法的超参数)。比如在节点00110上(为演示起见,选择5位),在要保存的节点路由信息是:

1****:xxx,....,xxx(k个)

01:xxx,....,xxx(k个)

000:xxx,....,xxx(k个)

0010:xxx,....,xxx(k个)

00111:xxx,....,xxx(k个)

以上为一行称为k-bucket。形象的来看,也是距离自己越近,节点越密集,越远,节点越稀疏。这个路由查找、节点查找的算法也是lgN复杂度。

区块链节点上线的时候是怎么找到它的peer节点

本人浅见:应该是有个公共地址,大家(包括新加入的)访问这个地址,即可获取所有节点的地址信息。类似的,迅雷下载,bt下载等p2p传输,也离不开一个公共地址来存放所有节点的地址信息。

区块链技术(节点和网络)

矿工是同时进行挖矿的节点,它们试图创建新的区块(通过改变nonce,反复对区块进行哈希运算,以找到有效区块),然后把新的副本加入区块链并广播给其它节点,其它节点再进行验证,最后转播或拒收该区块。需要注意的是,矿工和节点是分开的,节点可以是矿工,但节点不一定要挖矿。当全节点从矿工处接收了一个有效区块,它会将其添加到自己的本地副本中,并把区块转播给一些相连节点,这些节点再验证这个区块并广播给其它相连节点。通过这种方式,这个区块被传播到了整个网络,接下来的区块再重复这个步骤。

2018-09-05小白学区块链——21个超级节点

1,什么是超级节点

所谓超级节点,就是指EOS网络中,那些收集交易信息并打包到区块里的节点,也可以简单理解为打包区块的“矿工”。

2,为什么是21个超级节点

我们知道中心化的效率很高,但是安全性很低;去中心化安全性高,但是效率很低。所以区块链世界一直想在中心化和去中心化之间寻找一个平衡点,来兼顾安全与效率。EOS正是基于此,为了提高网络运转效率,通过减少节点来应对,采取投票的方式来确定21个节点,此之外还有100个备选节点见证人,这些节点或许在BM看来是对效率与安全的一个很好的平衡。

3,?成为超级节点的利益

皮书中提到,EOS的每年会增发代币的5%给维持节点的人。这笔钱什么概念呢?EOS总量十亿,5%也就是五千万;EOS现价按40RMB来算,分给21个节点,每个节点每年仍有接近1亿的收益。EOS的价格一旦飞涨,那么这些超级节点们在未来的收益是不可估量的,在这么大的好处面前,各国的各路大佬都来竞选节点分一杯羹。

4,超级节点对于持币人的意义

争超级节点的团队为了获得票数,要么大量买入EOS,要么拿出比较诱人的奖励来拉票,有的团队会拿收益给大家分红(BM不支持这样的贿选),有的是另外的利益。其次投票必须使用EOS,这就相对于EOS币的价值注入,使其成为更有价值的币。

【科普】如何选择区块链的最长链

本文由币车HIT(biche.yaofache.com)大V养成计划支持。

基于逐利,节点就会自发的遵守协议。共识就是数以万计的独立节点遵守了简单的规则(通过异步交互)自发形成的。

比特币没有中心机构,几乎所有的完整节点都有一份公共总帐本,那么大家如何达成共识:确认哪一份才是公认权威的总账本呢?

为什么要遵守协议

这其实是一个经济问题,在经济活动中的每个人都是自私自利的,追求的是利益的最大化,一个节点工作量只有在其他的节点认同其是有效的(打包的新区块,其他的节点只有验证通过才会加入到区块链中,并在网络上传播),才能够过得收益,?而只有遵守规则才会得到其他的节点认同。?因此,基于逐利,节点就会自发的遵守协议。共识就是数以万计的独立节点遵守了简单的规则(通过异步交互)自发形成的。

去中心化共识

实际上,比特币的共识由所有节点的4个独立过程相互作用而产生:

每个节点(挖矿节点)依据标准对每个交易进行独立验证;挖矿节点通过完成工作量证明,将交易记录独立打包进新区块;每个节点独立的对新区块进行校验并组装进区块链;每个节点对区块链进行独立选择,在工作量证明机制下选择累计工作量最大的区块链;共识最终目的是保证比特币不停的在工作量最大的区块链上运转,工作量最大的区块链就是权威的公共总帐本。

最长链的选择

先来一个定义,把累计了最多难度的区块链。在一般情况下,也是包含最多区块的那个链称为主链

每一个(挖矿)节点总是选择并尝试延长主链。

分叉

当有两名矿工在几乎在相同的时间内,各自都算得了工作量证明解,便立即传播自己的“获胜”区块到网络中,先是传播给邻近的节点而后传播到整个网络。每个收到有效区块的节点都会将其并入并延长区块链。?当这个两个区块传播时,一些节点首先收到#3458A,?一些节点首先收到#3458B,这两个候选区块(通常这两个候选区块会包含几乎相同的交易)都是主链的延伸,分叉就会产生,这时分叉出有竞争关系的两条链。两个块都收到的节点,会把其中有更多工作量的一条会继续作为主链,另一条作为备用链保存(保存是因为备用链将来可能会超过主链难度称为新主链)。

分叉解决

收到#3458A的(挖矿)节点,会立刻以这个区块为父区块来产生新的候选区块,并尝试寻找这个候选区块的工作量证明解。同样地,接受#3458B区块的节点会以这个区块为链的顶点开始生成新块,延长这个链(下面称为B链)。?当原本以#3458A为父区块求解的节点在收到#3458B,?#3459B之后,会立刻将B链作为主链(因为#3458A为顶点的链已经不是最长链了)继续挖矿。节点也有可能先收到#3459B,再收到#3458B,收到#3459B时,会被认为是“孤块“(因为还找不到#3459B的父块#3458B)保存在孤块池中,一旦收到父块#3458B时,节点就会将孤块从孤块池中取出,并且连接到它的父区块,让它作为区块链的一部分。

比特币将区块间隔设计为10分钟,是在更快速的交易确认和更低的分叉概率间作出的妥协。更短的区块产生间隔会让交易确认更快地完成,也会导致更加频繁地区块链分叉。与之相对地,长的间隔会减少分叉数量,却会导致更长的确认时间。