链家怎么运用的区块链?

高分请问下,链家怎么运用的区块链?
最新回答
风软一江水

2024-09-05 16:54:04

区块链技术通俗讲解

区块链技术通俗讲解如下:

简单来说:区块链就是使用一揽子既有的网络技术,组建而成的新一代网络系统,这个网络系统有新结构,有新机制,有前所未有的新价值。具体使用了五大技术或创新:加密技术、P2P网络技术、分布式存储技术、共识机制、智能合约。

本质上讲:它是一个共享数据库,存储于其中的数据或信息,具有“不可伪造”“全程留痕”“可以追溯”“公开透明”“集体维护”等特征。基于这些特征,区块链技术奠定了坚实的“信任”基础,创造了可靠的“合作”机制,具有广阔的运用前景。

区块链起源于比特币,2008年11月1日,一位自称中本聪的人发表了《比特币:一种点对点的电子现金系统》一文,这标志着比特币的诞生。

两个月后理论步入实践,2009年1月3日第一个序号为0的创世区块诞生。几天后2009年1月9日出现序号为1的区块,并与序号为0的创世区块相连接形成了链,标志着区块链的诞生。

区块链特点:

1.去中心化。

在区块链系统中,不存在中心化的管理机构。区块链数据的存储、传输、验证等过程均基于分布式的系统结构,整个网络中不存在中心节点。公有链网络中所有参与的节点都具有同等权利与义务。任一节点的损坏都不会影响整个系统的运作。

2.开放性。

除了交易各方的私有信息被加密外,区块链的数据对所有人公开,提供灵活的脚本代码系统,整个系统信息高度透明,并且在系统指定的规则范围内,节点之间无法相互欺骗。

3.自治性。

共识技术,智能合约。

什么是区块链?运用在哪些方面?

您的问题我已看到,那么,区块链能应用在哪些方面?下面由小编来为您解答。

答:比特币是区块链的第一个具体应用。它是在2008年由一个人或一群人提出的一篇论文中提出的。比特币使用区块链来对比特币进行数字发送,而BitCoin的名称是比特币,而不需要第三方中间人的干涉。

但比特币并不是区块链的唯一应用,如下:

1.金融领域:将区块链技术应用在金融行业中,能够省去第三方中介环节,实现点对点的直接对接,从而在大大降低成本的同时,快速完成交易支付。

2.物联网和物流领域:区块链在物联网和物流领域也可以天然结合。通过区块链可以降低物流成本,追溯物品的生产和运送过程,并且提高供应链管理的效率。

3.公共服务领域:区块链在公共管理、能源、交通等领域都与民众的生产生活息息相关,但是这些领域的中心化特质也带来了一些问题,可以用区块链来改造。

4.数字版权领域:通过区块链技术,可以对作品进行鉴权,证明文字、视频、音频等作品的存在,保证权属的真实、唯一性

5.保险领域:在保险理赔方面,保险机构负责资金归集、投资、理赔,往往管理和运营成本较高。通过智能合约的应用,既无需投保人申请,也无需保险公司批准,只要触发理赔条件,实现保单自动理赔。

6.公益领域:区块链上存储的数据,高可靠且不可篡改,天然适合用在社会公益场景。公益流程中的相关信息,如捐赠项目、募集明细、资金流向、受助人反馈等,均可以存放于区块链上,并且有条件地进行透明公开公示,方便社会监督。

以上仅供您参考,还望您能采纳,谢谢!

区块链原理?

区块链是一种分布式共享记账的技术,它要做的事情就是让参与的各方能够在技术层面建立信任关系。

区块链可以大致分成两个层面,一是做区块链底层技术;二是做区块链上层应用,即基于区块链的改造、优化或者创新应用。

区块链的核心意义到底是什么,我们的理解是,区块链最核心的意义是参与方之间建立数据信用,通过单方面的对抗,在明确规定下打造单方面的生态共同保障完整机会,这是一个体系,这种建立可以结束没有区块链之前的问题,没有区块链之前,在数据共享的时候是无法做到有新的共享,即使做定向也只是给你一个接口,区块链有了以后,让参与方是实现信用的共享,欢迎关注兄弟连区块链学院。

区块链技术主要可以运用到哪些方面?

区块链的主要一个优势是无需中介参与、过程高效透明且成本低。说到运用的话,比如说WENI、唯你商城、还有那些数字货币交易平台都是由运用到区块链技术的。

区块链技术的运用有哪些?

区块链技术运用在了很多个行业中,简单举几个例子:

京东物流打造区块链溯源平台,牛羊肉一键式可溯;

区块链技术应用电子票据,一键查看所有就医票据;

深圳利用区块链系统存证技术,率先推出网贷投票系统;

沃尔玛加入区块链联盟MediLedger追溯药品来源。

更多区块链技术运用可以在密码财经了解。

深入了解区块链的共识机制及算法原理

所谓“共识机制”,是通过特殊节点的投票,在很短的时间内完成对交易的验证和确认;对一笔交易,如果利益不相干的若干个节点能够达成共识,我们就可以认为全网对此也能够达成共识。再通俗一点来讲,如果中国一名微博大V、美国一名虚拟币玩家、一名非洲留学生和一名欧洲旅行者互不相识,但他们都一致认为你是个好人,那么基本上就可以断定你这人还不坏。

要想整个区块链网络节点维持一份相同的数据,同时保证每个参与者的公平性,整个体系的所有参与者必须要有统一的协议,也就是我们这里要将的共识算法。比特币所有的节点都遵循统一的协议规范。协议规范(共识算法)由相关的共识规则组成,这些规则可以分为两个大的核心:工作量证明与最长链机制。所有规则(共识)的最终体现就是比特币的最长链。共识算法的目的就是保证比特币不停地在最长链条上运转,从而保证整个记账系统的一致性和可靠性。

区块链中的用户进行交易时不需要考虑对方的信用、不需要信任对方,也无需一个可信的中介机构或中央机构,只需要依据区块链协议即可实现交易。这种不需要可信第三方中介就可以顺利交易的前提是区块链的共识机制,即在互不了解、信任的市场环境中,参与交易的各节点出于对自身利益考虑,没有任何违规作弊的动机、行为,因此各节点会主动自觉遵守预先设定的规则,来判断每一笔交易的真实性和可靠性,并将检验通过的记录写入到区块链中。各节点的利益各不相同,逻辑上将它们没有合谋欺骗作弊的动机产生,而当网络中有的节点拥有公共信誉时,这一点尤为明显。区块链技术运用基于数学原理的共识算法,在节点之间建立“信任”网络,利用技术手段从而实现一种创新式的信用网络。

目前区款连行业内主流的共识算法机制包含:工作量证明机制、权益证明机制、股份授权证明机制和Pool验证池这四大类。

工作量证明机制即对于工作量的证明,是生成要加入到区块链中的一笔新的交易信息(即新区块)时必须满足的要求。在基于工作量证明机制构建的区块链网络中,节点通过计算随机哈希散列的数值解争夺记账权,求得正确的数值解以生成区块的能力是节点算力的具体表现。工作量证明机制具有完全去中心化的优点,在以工作量证明机制为共识的区块链中,节点可以自由进出。大家所熟知的比特币网络就应用工作量证明机制来生产新的货币。然而,由于工作量证明机制在比特币网络中的应用已经吸引了全球计算机大部分的算力,其他想尝试使用该机制的区块链应用很难获得同样规模的算力来维持自身的安全。同时,基于工作量证明机制的挖矿行为还造成了大量的资源浪费,达成共识所需要的周期也较长,因此该机制并不适合商业应用。

2012年,化名SunnyKing的网友推出了Peercoin,该加密电子货币采用工作量证明机制发行新币,采用权益证明机制维护网络安全,这是权益证明机制在加密电子货币中的首次应用。与要求证明人执行一定量的计算工作不同,权益证明要求证明人提供一定数量加密货币的所有权即可。权益证明机制的运作方式是,当创造一个新区块时,矿工需要创建一个“币权”交易,交易会按照预先设定的比例把一些币发送给矿工本身。权益证明机制根据每个节点拥有代币的比例和时间,依据算法等比例地降低节点的挖矿难度,从而加快了寻找随机数的速度。这种共识机制可以缩短达成共识所需的时间,但本质上仍然需要网络中的节点进行挖矿运算。因此,PoS机制并没有从根本上解决PoW机制难以应用于商业领域的问题。

股份授权证明机制是一种新的保障网络安全的共识机制。它在尝试解决传统的PoW机制和PoS机制问题的同时,还能通过实施科技式的民主抵消中心化所带来的负面效应。

股份授权证明机制与董事会投票类似,该机制拥有一个内置的实时股权人投票系统,就像系统随时都在召开一个永不散场的股东大会,所有股东都在这里投票决定公司决策。基于DPoS机制建立的区块链的去中心化依赖于一定数量的代表,而非全体用户。在这样的区块链中,全体节点投票选举出一定数量的节点代表,由他们来代理全体节点确认区块、维持系统有序运行。同时,区块链中的全体节点具有随时罢免和任命代表的权力。如果必要,全体节点可以通过投票让现任节点代表失去代表资格,重新选举新的代表,实现实时的民主。

股份授权证明机制可以大大缩小参与验证和记账节点的数量,从而达到秒级的共识验证。然而,该共识机制仍然不能完美解决区块链在商业中的应用问题,因为该共识机制无法摆脱对于代币的依赖,而在很多商业应用中并不需要代币的存在。

Pool验证池基于传统的分布式一致性技术建立,并辅之以数据验证机制,是目前区块链中广泛使用的一种共识机制。

Pool验证池不需要依赖代币就可以工作,在成熟的分布式一致性算法(Pasox、Raft)基础之上,可以实现秒级共识验证,更适合有多方参与的多中心商业模式。不过,Pool验证池也存在一些不足,例如该共识机制能够实现的分布式程度不如PoW机制等

这里主要讲解区块链工作量证明机制的一些算法原理以及比特币网络是如何证明自己的工作量的,希望大家能够对共识算法有一个基本的认识。

工作量证明系统的主要特征是客户端要做一定难度的工作来得到一个结果,验证方则很容易通过结果来检查客户端是不是做了相应的工作。这种方案的一个核心特征是不对称性:工作对于请求方是适中中的,对于验证方是易于验证的。它与验证码不同,验证码是易于被人类解决而不是易于被计算机解决。

下图所示的为工作量证明流程。

举个例子,给个一个基本的字符创“hello,world!”,我们给出的工作量要求是,可以在这个字符创后面添加一个叫做nonce(随机数)的整数值,对变更后(添加nonce)的字符创进行SHA-256运算,如果得到的结果(一十六进制的形式表示)以“0000”开头的,则验证通过。为了达到这个工作量证明的目标,需要不停地递增nonce值,对得到的字符创进行SHA-256哈希运算。按照这个规则,需要经过4251次运算,才能找到前导为4个0的哈希散列。

通过这个示例我们对工作量证明机制有了一个初步的理解。有人或许认为如果工作量证明只是这样一个过程,那是不是只要记住nonce为4521使计算能通过验证就行了,当然不是了,这只是一个例子。

下面我们将输入简单的变更为”Hello,World!+整数值”,整数值取1~1000,也就是说将输入变成一个1~1000的数组:Hello,World!1;Hello,World!2;...;Hello,World!1000。然后对数组中的每一个输入依次进行上面的工作量证明—找到前导为4个0的哈希散列。

由于哈希值伪随机的特性,根据概率论的相关知识容易计算出,预计要进行2的16次方次数的尝试,才能得到前导为4个0的哈希散列。而统计一下刚刚进行的1000次计算的实际结果会发现,进行计算的平均次数为66958次,十分接近2的16次方(65536)。在这个例子中,数学期望的计算次数实际就是要求的“工作量”,重复进行多次的工作量证明会是一个符合统计学规律的概率事件。

统计输入的字符创与得到对应目标结果实际使用的计算次数如下:

对于比特币网络中的任何节点,如果想生成一个新的区块加入到区块链中,则必须解决出比特币网络出的这道谜题。这道题的关键要素是工作量证明函数、区块及难度值。工作量证明函数是这道题的计算方法,区块是这道题的输入数据,难度值决定了解这道题的所需要的计算量。

比特币网络中使用的工作量证明函数正是上文提及的SHA-256。区块其实就是在工作量证明环节产生的。旷工通过不停地构造区块数据,检验每次计算出的结果是否满足要求的工作量,从而判断该区块是不是符合网络难度。区块头即比特币工作量证明函数的输入数据。

难度值是矿工们挖掘的重要参考指标,它决定了旷工需要经过多少次哈希运算才能产生一个合法的区块。比特币网络大约每10分钟生成一个区块,如果在不同的全网算力条件下,新区块的产生基本都保持这个速度,难度值必须根据全网算力的变化进行调整。总的原则即为无论挖矿能力如何,使得网络始终保持10分钟产生一个新区块。

难度值的调整是在每个完整节点中独立自动发生的。每隔2016个区块,所有节点都会按照统一的格式自动调整难度值,这个公式是由最新产生的2016个区块的花费时长与期望时长(按每10分钟产生一个取款,则期望时长为20160分钟)比较得出来的,根据实际时长一期望时长的比值进行调整。也就是说,如果区块产生的速度比10分钟快,则增加难度值;反正,则降低难度值。用公式来表达如下:

新难度值=旧难度值*(20160分钟/过去2016个区块花费时长)。

工作量证明需要有一个目标值。比特币工作量证明的目标值(Target)的计算公式如下:

目标值=最大目标值/难度值,其中最大目标值为一个恒定值0x00000000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

目标值的大小与难度值成反比,比特币工作量证明的达成就是矿中计算出来的区块哈希值必须小于目标值。

我们也可以将比特币工作量的过程简单的理解成,通过不停变更区块头(即尝试不同nonce值)并将其作为输入,进行SHA-256哈希运算,找出一个有特定格式哈希值的过程(即要求有一定数量的前导0),而要求的前导0个数越多,难度越大。

可以把比特币将这道工作量证明谜题的步骤大致归纳如下:

该过程可以用下图表示:

比特币的工作量证明,就是我们俗称“挖矿”所做的主要工作。理解工作量证明机制,将为我们进一步理解比特币区块链的共识机制奠定基础。