为什么说深度学习和机器学习截然不同

请教下,为什么说深度学习和机器学习截然不同
最新回答
纵山崖

2024-11-04 03:33:26

深度学习是机器学习的一个分支。
为什么说公交车和交通工具截然不同,因为公交车是交通工具的一种。
包含与被包含的关系,当然截然不同。

现在不少人对人工智能(Artificial Intelligence,简称 AI),机器学习(Machine Learning,简称 ML)和深度学习(Deep Learning,简称 DL)概念不清,有很多困惑。作为智能领域的从业者,必须非常清楚AI,ML和DL之间的区别。

人工智能(AI)是一个总括合集概念,涵盖从最早的逻辑结构的有效老式人工智能 (Good Old-Fashioned Artificial Intelligence,简称GOFAI),到最新的联结结构的深度学习(DL)。

机器学习(ML)是 人工智能(AI)的子集,涵盖一切有关数据训练的学习算法研究,包括多年来发展的一整套成熟技术,比如:
•线性回归(Linear Regression,数理统计中回归分析方法);
•K均值(K-means,基于原型的目标函数聚类方法);
•决策树(Decision Trees,直观运用概率分析的一种图解法);
•随机森林(Random Forest,包含多个决策树的分类器);
•PCA(Principal Component Analysis,主成分分析,一种多变量分析方法);
•SVM(Support Vector Machine,支持向量机,一种监督式学习的方法);
•ANN(Artificial Neural Networks,人工神经网络,一种运算模型)。

深度学习(DL)则起源于人工神经网络(ANN)。

人工神经网络(ANN)是60年代早期发明的技术,一些机器学习(ML)从业者曾接触过,他们对深度学习(DL)的第一印象可能是:这不过是多层结构的人工神经网络(ANN)而已。此外,深度学习(DL)的成功主要是基于大量可用的数据以及更强大的计算引擎比如 GPU(Graphic Processing Units)的出现。这当然是真的,深度学习(DL)的出现基本上是受益于大数据及计算能力的发展,然而,由此得出深度学习(DL)只是一个比支持向量机(SVM)或决策树更好的算法的结论,类似于只见树木,不见森林。

套用 Andreesen 的话“软件正在接管世界”,那么“深度学习(DL)正在接管机器学习(ML)”。两篇来自不同机器学习领域从业者的文章很好的解释了为什么深度学习正在接管世界。

人工智能的自然语言处理(NLP)专家 Chris Manning 这样形容“深度学习海啸”:

「 深度学习的浪潮几年前就在计算语言学领域兴起,2015年则是这场海啸全面冲击各大自然语言处理(NLP)会议的一年,一些权威专家预测,最终的冲击将会更大。」

Nicholas Paragios 则写了一篇名为“深度失落——计算机视觉研究”的文章:

「 如此失落是因为,深度学习具有高度复杂性和广泛的自由度特性,一旦被赋予大量被标记的数据以及不可想象(直到最近出现)的计算能力,就能解决所有的计算机视觉问题。如果是这样的话,那么深度学习接管业界(似乎既成事实),计算机视觉研究成为边缘学科并走上计算机图形的老路(学术研究的活跃度和数量)将只是时间问题。」

这两篇文章都强调了深度学习(DL)如何自根本上对传统机器学习(ML)的颠覆。当然,深度学习(DL)在商用领域也带来同样的颠覆。但是让人震惊和困惑的是,即使 Gartner 也没能分清机器学习(ML)和深度学习(DL)之间的差别。这是 Gartner 于 2016 年 8 月份发布的行业发展周期图(Hyper Cycle),深度学习甚至没有被提及:

这很糟糕,会造成一些客户对机器学习(ML)的短视,并对深度学习(DL)视而不见。

尽管被 Gartner 忽视了,深度学习(DL)依然持续受追捧。当前对深度学习的追捧主要是:我们已经拥有了可以商业化的机器,只要给予足够多的数据和足够长的训练时间,机器就能够自主学习。这要么是对深度学习(DL)现有技术能力的夸大,要么就是对深度学习(DL)的实践过度简化。