同意上一个回答,我来补充一下
决策树
决策树是在已知各种情况发生概率的基础上,通过构成决策树来求取
净现值
的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。随机森林
在
机器学习
中,随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数
而定。逻辑回归
逻辑回归,是一种广义的
线性回归
分析模型,常用于数据挖掘
,疾病自动诊断,经济预测等领域。例如,探讨引发疾病的危险因素,并根据危险因素预测疾病发生的概率等。Adaboost
Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。
其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。
朴素贝叶斯
朴素贝叶斯法是基于
贝叶斯定理
与特征条件独立假设的分类方法。最为广泛的两种分类模型是决策树模型和朴素贝叶斯模型。和决策树模型相比,朴素贝叶斯分类器发源于古典数学理论,有着坚实的数学基础,以及稳定的分类效率。同时,朴素贝叶斯分类器模型所需估计的参数很少,对缺失数据不太敏感,算法也比较简单。
K近邻
所谓K近邻算法,即是给定一个训练
数据集
,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中。SVM
使用铰链
损失函数
计算经验风险并在求解系统中加入了正则化项以优化结构风险,是一个具有稀疏性和稳健性的分类器。神经网络
人工神经网络
是生物神经网络在某种简化意义下的技术复现,它的主要任务是根据生物神经网络的原理和实际应用的需要建造实用的人工神经网络模型,设计相应的学习算法,模拟人脑的某种智能活动,然后在技术上实现出来用以解决实际问题。因此,生物神经网络主要研究智能的机理;人工神经网络主要研究智能机理的实现,两者相辅相成。