面试题:如何造10w条测试数据,在数据库插入10w条不同数据

我请教一下,面试题:如何造10w条测试数据,在数据库插入10w条不同数据
最新回答
阿三◥很可爱

2024-10-24 07:58:24



前言

面试题:如果造10w条测试数据,如何在数据库插入10w条数据,数据不重复

最近面试经常会问到sql相关的问题,在数据库中造测试数据是平常工作中经常会用到的场景,一般做压力测试,性能测试也需在数据库中先准备测试数据。那么如何批量生成大量的测试数据呢?

由于平常用python较多,所以想到用python先生成sql,再执行sql往数据库插入数据。

使用语言:python 3.6

插入数据

首先我要插入的 SQL 语句,需每条 id 不重复 ,下面是执行单个插入语句

INSERT INTO apps.apiapp_card (id, card_id, card_user, add_time) VALUES (‘1‘, ‘‘, ‘test123‘, ‘2019-12-17‘);

10w 太多执行时间长,用 python 先生成 1w条测下执行时间。

首先要生成多个inert 语句,这里我用 python 语言写段生成sql的文本。

用 %s 替换需要变的字段值,如果有多个值都需要变,可以用多个%s替换对应值,我这里设计的表,只要id不一样就可以插入成功。
用for 循环,每次循环 id 加1,这样 id 就可以保证不会重复,否则插入数据库时有重复的无法写入成功。
a 是追加写入
每条sql后面分号隔开
每次写入数据,最后面加\n 换行
python3
作者:上海-悠悠 QQ群717225969
for i in range(10000):

a = "INSERT INTO apps.apiapp_card (id, card_id, card_user, add_time) VALUES (‘%s‘, ‘‘, ‘test123‘, ‘2019-12-17‘);"%str(i+1)

with open("a.txt", "a") as fp:

fp.write(a+"\n")

执行python代码,在本地生成一个 a.text 文件,打开生成的数据,部分如下

INSERT INTO apps.apiapp_card (id, card_id, card_user, add_time) VALUES (‘1‘, ‘‘, ‘test123‘, ‘2019-12-17‘);

INSERT INTO apps.apiapp_card (id, card_id, card_user, add_time) VALUES (‘2‘, ‘‘, ‘test123‘, ‘2019-12-17‘);

INSERT INTO apps.apiapp_card (id, card_id, card_user, add_time) VALUES (‘3‘, ‘‘, ‘test123‘, ‘2019-12-17‘);

INSERT INTO apps.apiapp_card (id, card_id, card_user, add_time) VALUES (‘4‘, ‘‘, ‘test123‘, ‘2019-12-17‘);

......

INSERT INTO apps.apiapp_card (id, card_id, card_user, add_time) VALUES (‘10000‘, ‘‘, ‘test123‘, ‘2019-12-17‘);

如果id是手机号呢,如何生成10w个不同手机号?

可以按手机号前3位开头的号码段生成,比如186开头的,先用初始数据 1860000000,再这个数字基础上每次加1

加到 18600099999,这样号码段1860000000-18600099999就是10w个手机号了。

把id换成手机号后,修改代码如下

python3
作者:上海-悠悠 QQ群717225969
for i in range(10000):

a = "INSERT INTO apps.apiapp_card (id, card_id, card_user, add_time) VALUES (‘%s‘, ‘‘, ‘test123‘, ‘2019-12-17‘);"%str(i+1860000000)

with open("a.txt", "a") as fp:

fp.write(a+"\n")

只需在上面基础上把 str(i+1) 改成 str(i+1860000000) 就可以生成手机号了

INSERT INTO apps.apiapp_card (id, card_id, card_user, add_time) VALUES (‘1860000000‘, ‘‘, ‘test123‘, ‘2019-12-17‘);

INSERT INTO apps.apiapp_card (id, card_id, card_user, add_time) VALUES (‘1860000001‘, ‘‘, ‘test123‘, ‘2019-12-17‘);

INSERT INTO apps.apiapp_card (id, card_id, card_user, add_time) VALUES (‘1860000002‘, ‘‘, ‘test123‘, ‘2019-12-17‘);

把生成的文本复制出来 ,多个INSERT INTO 对应的 sql 一次性贴到 navicat 客户端执行

执行完成花了5分钟左右,也就是说10w条得50分钟,这太慢了,要是数据更多,会等太久,不是我们想要的效果!

批量执行

由于单个执行,花费时间太长,现在需要优化下改成一个 inert 语句,改成批量插入数据,只写一个 insert into 这样一次性批量写到数据库,会快很多。

可以将SQL语句进行拼接,使用 insert into table () values (),(),(),()然后再一次性插入。

批量执行要么全部成功,要么一个都不会写入成功,当写的 SQL 语法有问题时就不会写入成功了。

需注意:

拼接 sql ,多个values 值中间用英文逗号隔开
value 值要与数据表的字段一一对应
一定要注意最后一条数据后面不是逗号,改成分号
python3
作者:上海-悠悠 QQ群717225969
insert_sql = "INSERT INTO apps.apiapp_card VALUES "

with open("b.txt", "a") as fp:

fp.write(insert_sql+"\n")

for i in range(10000):

a = "(‘%s‘, ‘‘, ‘test123‘, ‘2019-12-17‘),"%str(i+10001)

with open("b.txt", "a") as fp:

fp.write(a+"\n")

执行完成后,复制 b.text 文件的内容,需注意的是这里一定要改成 ;结尾,否则语法报错

部分数据内容展示如下

INSERT INTO apps.apiapp_card VALUES

(‘10001‘, ‘‘, ‘test123‘, ‘2019-12-17‘),

(‘10002‘, ‘‘, ‘test123‘, ‘2019-12-17‘),

......

(‘20000‘, ‘‘, ‘test123‘, ‘2019-12-17‘);

复制生成的 INSERT INTO 到 navicat 客户端执行

执行完成,最后看的测试结果,1w条数据只用了0.217秒,速度明显提高不少。

10w数据插入

接着测下,当生成10 w条数据的时候,会花多少时间?

作者:上海-悠悠 QQ群717225969
python3
insert_sql = "INSERT INTO apps.apiapp_card VALUES "

with open("b.txt", "a") as fp:

fp.write(insert_sql+"\n")

for i in range(100000):

a = "(‘%s‘, ‘‘, ‘test123‘, ‘2019-12-17‘),"%str(i+100000)

with open("b.txt", "a") as fp:

fp.write(a+"\n")

使用python脚本执行后生成的数据如下

INSERT INTO apps.apiapp_card VALUES

(‘100000‘, ‘‘, ‘test123‘, ‘2019-12-17‘),

(‘100001‘, ‘‘, ‘test123‘, ‘2019-12-17‘),

......

(‘199999‘, ‘‘, ‘test123‘, ‘2019-12-17‘);

直接插入mysql 这时候会有报错:Err 1153 - Got a packet bigger than ‘max_allowed_packet‘ bytes

报错原因:由于数据量较大,mysql 会对单表数据量较大的 SQL 做限制,10w条数据的字符串超出了max_allowed_packet

的允许范围。

解决办法:需修改mysql 数据库的max_allowed_packet的值,改大一点

max_allowed_packet

先在 navicat 输入命令查看 max_allowed_packet 最大允许包

show global variables like ‘max_allowed_packet‘;

查看到 value 值是 4194304, 最大限制是 40 M,我们只需的sql字符串太大了,超出了这个范围。

在 navicat 客户端我们无法直接修改对应 value值,需登录到mysql,用命令行修改。

我这里 mysql 是搭建在 docker 上,需先进容器,登录到mysql.

操作步骤如下:

docker exec 进docker容器

mysql -uroot -p 输入密码后登录mysql

set global max_allowed_packet=419430400; 设置最大允许包 400M

show global variables like ‘max_allowed_packet‘; 查看前面设置是否生效

[root@VM_0_2_centos ~]# docker exec -it 934b30a6dc36 /bin/bash

root@934b30a6dc36:/# mysql -uroot -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 303822

Server version: 5.7.27 MySQL Community Server (GPL)

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type ‘help;‘ or ‘\h‘ for help. Type ‘\c‘ to clear the current input statement.

mysql> show global variables like ‘max_allowed_packet‘;

+--------------------+-----------+

| Variable_name | Value |

+--------------------+-----------+

| max_allowed_packet | 4194304 |

+--------------------+-----------+

1 row in set (0.00 sec)

mysql> set global max_allowed_packet=419430400;

Query OK, 0 rows affected (0.00 sec)

mysql> show global variables like ‘max_allowed_packet‘;

+--------------------+-----------+

| Variable_name | Value |

+--------------------+-----------+

| max_allowed_packet | 419430400 |

+--------------------+-----------+

1 row in set (0.00 sec)

mysql>

从上面的查询结果可以看到,已经生效了。

再次重新执行上面10w条数据,查看运行结果总共花11秒左右时间。

受影响的行: 100000

时间: 11.678s

上面的方法只能临时生效,当重启mysql后,你会发现又还原回去了。

这里还有一种永久生效的方法,需修改my.cnf配置文件

在[mysqld]部分添加一句,如果有就修改对应的值:

max_allowed_packet=40M

这里的值,可以用 M单位,修改后,需要重启下mysql就可以生效了

使用python执行

如果不用 navicat 客户端,直接用python去执行,会花多少时间呢?

先封装连接mysql的方法,然后拼接执行的sql语句,拼接的时候需注意,最后的字符 ,需改成 ;

在执行代码前先获取当前的时间戳,代码执行完成后再次获取一次时间戳。两次的时间间隔,就是执行的时间了,时间单位是s

python 执行 mysql 代码参考如下

import pymysql

‘‘‘
python3
作者:上海-悠悠 QQ群717225969

pip install PyMySQL==0.9.3

‘‘‘

dbinfo = {

"host": "192.168.1.x",

"user": "root",

"password": "123456",

"port": 3306}

class DbConnect():

def init(self, db_cof, database=""):

self.db_cof = db_cof

# 打开数据库连接

self.db = pymysql.connect(database=database,

cursorclass=pymysql.cursors.DictCursor,

**db_cof)

# 使用cursor()方法获取操作游标
self.cursor = self.db.cursor()
def select(self, sql):
# SQL 查询语句
# sql = "SELECT * FROM EMPLOYEE # WHERE INCOME > %s" % (1000)
self.cursor.execute(sql)
results = self.cursor.fetchall()
return results
def execute(self, sql):
# SQL 删除、提交、修改语句
# sql = "DELETE FROM EMPLOYEE WHERE AGE > %s" % (20)
try:
# 执行SQL语句
self.cursor.execute(sql)
# 提交修改
self.db.commit()
except:
# 发生错误时回滚
self.db.rollback()
def close(self):
# 关闭连接
self.db.close()
if name == ‘main‘:

import time

insert_sql = "INSERT INTO apps.apiapp_card VALUES "

insert_values = "".join(["(‘%s‘, ‘‘, ‘test123‘, ‘2019-12-17‘), \n"%str(i+100000) for i in range(100000)])

# 拼接sql

sql = insert_sql + insert_values[:-3]+";"

# print(sql)

# 执行sql

time1 = time.time()

db = DbConnect(dbinfo, database="apps")

db.execute(sql)

db.close()

time2 = time.time()

print("总过耗时:%s" % (time2-time1))

使用python执行结果:总过耗时:1.0816256999969482,结果超出我的想象,10w条数据居然只要1秒钟!
面试题:如何造10w条测试数据,在数据库插入10w条不同数据
标签:sql 语句提高names数据==commandatiblewhere