通过把耗时长的函数用c语言实现,并编译成mex函数可以加快执行速度。Matlab本身是不带c语言的编译器的,所以要求你的机器上已经安装有VC,BC或WatcomC中的一种。如果你在安装Matlab时已经设置过编译器,那么现在你应该就可以使用mex命令来编译c语言的程序了。如果当时没有选,就在Matlab里键入mex-setup,下面只要根据提示一步步设置就可以了。需要注意的是,较低版本的在设置编译器路径时,只能使用路径名称的8字符形式。比如我用的VC装在路径C:\PROGRAMFILES\DEVSTUDIO下,那在设置路径时就要写成:“C:\PROGRA~1”这样设置完之后,mex就可以执行了。为了测试你的路径设置正确与否,把下面的程序存为hello.c。/*hello.c*/#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){mexPrintf("hello,world!\n");}假设你把hello.c放在了C:\TEST\下,在Matlab里用CDC:\TEST\将当前目录改为C:\TEST\(注意,仅将C:\TEST\加入搜索路径是没有用的)。现在敲:mexhello.c如果一切顺利,编译应该在出现编译器提示信息后正常退出。如果你已将C:\TEST\加入了搜索路径,现在键入hello,程序会在屏幕上打出一行:hello,world!看看C\TEST\目录下,你会发现多了一个文件:HELLO.DLL。这样,第一个mex函数就算完成了。分析hello.c,可以看到程序的结构是十分简单的,整个程序由一个接口子过程mexFunction构成。voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[])前面提到过,Matlab的mex函数有一定的接口规范,就是指这nlhs:输出参数数目plhs:指向输出参数的指针nrhs:输入参数数目例如,使用[a,b]=test(c,d,e)调用mex函数test时,传给test的这四个参数分别是2,plhs,3,prhs其中:prhs[0]=cprhs[1]=dprhs[2]=e当函数返回时,将会把你放在plhs[0],plhs[1]里的地址赋给a和b,达到返回数据的目的。细心的你也许已经注意到,prhs[i]和plhs[i]都是指向类型mxArray类型数据的指针。这个类型是在mex.h中定义的,事实上,在Matlab里大多数数据都是以这种类型存在。当然还有其他的数据类型,可以参考Apiguide.pdf里的介绍。为了让大家能更直观地了解参数传递的过程,我们把hello.c改写一下,使它能根据输入参数的变化给出不同的屏幕输出://hello.c2.0#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){inti;i=mxGetScalar(prhs[0]);if(i==1)mexPrintf("hello,world!\n");elsemexPrintf("大家好!\n");}将这个程序编译通过后,执行hello(1),屏幕上会打出:hello,world!而hello(0)将会得到:大家好!现在,程序hello已经可以根据输入参数来给出相应的屏幕输出。在这个程序里,除了用到了屏幕输出函数mexPrintf(用法跟c里的printf函数几乎完全一样)外,还用到了一个函数:mxGetScalar,调用方式如下:i=mxGetScalar(prhs[0]);"Scalar"就是标量的意思。在Matlab里数据都是以数组的形式存在的,mxGetScalar的作用就是把通过prhs[0]传递进来的mxArray类型的指针指向的数据(标量)赋给C程序里的变量。这个变量本来应该是double类型的,通过强制类型转换赋给了整形变量i。既然有标量,显然还应该有矢量,否则矩阵就没法传了。看下面的程序://hello.c2.1#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){int*i;i=mxGetPr(prhs[0]);if(i[0]==1)mexPrintf("hello,world!\n");elsemexPrintf("大家好!\n");}这样,就通过mxGetPr函数从指向mxArray类型数据的prhs[0]获得了指向double类型的指针。但是,还有个问题,如果输入的不是单个的数据,而是向量或矩阵,那该怎么处理呢?通过mxGetPr只能得到指向这个矩阵的指针,如果我们不知道这个矩阵的确切大小,就没法对它进行计算。为了解决这个问题,Matlab提供了两个函数mxGetM和mxGetN来获得传进来参数的行数和列数。下面例程的功能很简单,就是获得输入的矩阵,把它在屏幕上显示出来://show.c1.0#include"mex.h"#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){double*data;intM,N;inti,j;data=mxGetPr(prhs[0]);//获得指向矩阵的指针M=mxGetM(prhs[0]);//获得矩阵的行数N=mxGetN(prhs[0]);//获得矩阵的列数for(i=0;i<M;i++){for(j=0;j<N;j++)mexPrintf("%4.3f",data[j*M+i]);mexPrintf("\n");}}编译完成后,用下面的命令测试一下:a=1:10;b=[a;a+1];show(a)show(b)需要注意的是,在Matlab里,矩阵第一行是从1开始的,而在C语言中,第一行的序数为零,Matlab里的矩阵元素b(i,j)在传递到C中的一维数组大data后对应于data[j*M+i]。输入数据是在函数调用之前已经在Matlab里申请了内存的,由于mex函数与Matlab共用同一个地址空间,因而在prhs[]里传递指针就可以达到参数传递的目的。但是,输出参数却需要在mex函数内申请到内存空间,才能将指针放在plhs[]中传递出去。由于返回指针类型必须是mxArray,所以Matlab专门提供了一个函数:mxCreateDoubleMatrix来实现内存的申请,函数原型如下:mxArray*mxCreateDoubleMatrix(intm,intn,mxComplexityComplexFlag)m:待申请矩阵的行数n:待申请矩阵的列数为矩阵申请内存后,得到的是mxArray类型的指针,就可以放在plhs[]里传递回去了。但是对这个新矩阵的处理,却要在函数内完成,这时就需要用到前面介绍的mxGetPr。使用mxGetPr获得指向这个矩阵中数据区的指针(double类型)后,就可以对这个矩阵进行各种操作和运算了。下面的程序是在上面的show.c的基础上稍作改变得到的,功能是将输//reverse.c1.0#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){double*inData;double*outData;intM,N;inti,j;inData=mxGetPr(prhs[0]);M=mxGetM(prhs[0]);N=mxGetN(prhs[0]);plhs[0]=mxCreateDoubleMatrix(M,N,mxREAL);outData=mxGetPr(plhs[0]);for(i=0;i<M;i++)for(j=0;j<N;j++)outData[j*M+i]=inData[(N-1-j)*M+i];}当然,Matlab里使用到的并不是只有double类型这一种矩阵,还有字符串类型、稀疏矩阵、结构类型矩阵等等,并提供了相应的处理函数。本文用到编制mex程序中最经常遇到的一些函数,其余的详细情况清参考Apiref.pdf。通过前面两部分的介绍,大家对参数的输入和输出方法应该有了基本的了解。具备了这些知识,就能够满足一般的编程需要了。但这些程序还有些小的缺陷,以前面介绍的re由于前面的例程中没有对输入、输出参数的数目及类型进行检查,导致程序的容错性很差,以下程序则容错性较好#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){double*inData;double*outData;intM,N;//异常处理//异常处理if(nrhs!=1)mexErrMsgTxt("USAGE:b=reverse(a)\n");if(!mxIsDouble(prhs[0]))mexErrMsgTxt("theInputMatrixmustbedouble!\n");inData=mxGetPr(prhs[0]);M=mxGetM(prhs[0]);N=mxGetN(prhs[0]);plhs[0]=mxCreateDoubleMatrix(M,N,mxREAL);outData=mxGetPr(plhs[0]);for(i=0;i<M;i++)for(j=0;j<N;j++)outData[j*M+i]=inData[(N-1-j)*M+i];}在上面的异常处理中,使用了两个新的函数:mexErrMsgTxt和mxIsDouble。MexErrMsgTxt在给出出错提示的同时退出当前程序的运行。MxIsDouble则用于判断mxArray中的数据是否double类型。当然Matlab还提供了许多用于判断其他数据类型的函数,这里不加详述。需要说明的是,Matlab提供的API中,函数前缀有mex-和mx-两种。带mx-前缀的大多是对mxArray数据进行操作的函数,如mxIsDouble,mxCreateDoubleMatrix等等。而带mx前缀的则大多是与Matlab环境进行交互的函数,如mexPrintf,mxErrMsgTxt等等。了解了这一点,对在Apiref.pdf中查找所需的函数很有帮助。至此为止,使用C编写mex函数的基本过程已经介绍完了。
通过把耗时长的函数用c语言实现,并编译成mex函数可以加快执行速度。Matlab本身是不带c语言的编译器的,所以要求你的机器上已经安装有VC,BC或WatcomC中的一种。如果你在安装Matlab时已经设置过编译器,那么现在你应该就可以使用mex命令来编译c语言的程序了。如果当时没有选,就在Matlab里键入mex-setup,下面只要根据提示一步步设置就可以了。需要注意的是,较低版本的在设置编译器路径时,只能使用路径名称的8字符形式。比如我用的VC装在路径C:\PROGRAMFILES\DEVSTUDIO下,那在设置路径时就要写成:“C:\PROGRA~1”这样设置完之后,mex就可以执行了。为了测试你的路径设置正确与否,把下面的程序存为hello.c。/*hello.c*/#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){mexPrintf("hello,world!\n");}假设你把hello.c放在了C:\TEST\下,在Matlab里用CDC:\TEST\将当前目录改为C:\TEST\(注意,仅将C:\TEST\加入搜索路径是没有用的)。现在敲:mexhello.c如果一切顺利,编译应该在出现编译器提示信息后正常退出。如果你已将C:\TEST\加入了搜索路径,现在键入hello,程序会在屏幕上打出一行:hello,world!看看C\TEST\目录下,你会发现多了一个文件:HELLO.DLL。这样,第一个mex函数就算完成了。分析hello.c,可以看到程序的结构是十分简单的,整个程序由一个接口子过程mexFunction构成。voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[])前面提到过,Matlab的mex函数有一定的接口规范,就是指这nlhs:输出参数数目plhs:指向输出参数的指针nrhs:输入参数数目例如,使用[a,b]=test(c,d,e)调用mex函数test时,传给test的这四个参数分别是2,plhs,3,prhs其中:prhs[0]=cprhs[1]=dprhs[2]=e当函数返回时,将会把你放在plhs[0],plhs[1]里的地址赋给a和b,达到返回数据的目的。细心的你也许已经注意到,prhs[i]和plhs[i]都是指向类型mxArray类型数据的指针。这个类型是在mex.h中定义的,事实上,在Matlab里大多数数据都是以这种类型存在。当然还有其他的数据类型,可以参考Apiguide.pdf里的介绍。为了让大家能更直观地了解参数传递的过程,我们把hello.c改写一下,使它能根据输入参数的变化给出不同的屏幕输出://hello.c2.0#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){inti;i=mxGetScalar(prhs[0]);if(i==1)mexPrintf("hello,world!\n");elsemexPrintf("大家好!\n");}将这个程序编译通过后,执行hello(1),屏幕上会打出:hello,world!而hello(0)将会得到:大家好!现在,程序hello已经可以根据输入参数来给出相应的屏幕输出。在这个程序里,除了用到了屏幕输出函数mexPrintf(用法跟c里的printf函数几乎完全一样)外,还用到了一个函数:mxGetScalar,调用方式如下:i=mxGetScalar(prhs[0]);"Scalar"就是标量的意思。在Matlab里数据都是以数组的形式存在的,mxGetScalar的作用就是把通过prhs[0]传递进来的mxArray类型的指针指向的数据(标量)赋给C程序里的变量。这个变量本来应该是double类型的,通过强制类型转换赋给了整形变量i。既然有标量,显然还应该有矢量,否则矩阵就没法传了。看下面的程序://hello.c2.1#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){int*i;i=mxGetPr(prhs[0]);if(i[0]==1)mexPrintf("hello,world!\n");elsemexPrintf("大家好!\n");}这样,就通过mxGetPr函数从指向mxArray类型数据的prhs[0]获得了指向double类型的指针。但是,还有个问题,如果输入的不是单个的数据,而是向量或矩阵,那该怎么处理呢?通过mxGetPr只能得到指向这个矩阵的指针,如果我们不知道这个矩阵的确切大小,就没法对它进行计算。为了解决这个问题,Matlab提供了两个函数mxGetM和mxGetN来获得传进来参数的行数和列数。下面例程的功能很简单,就是获得输入的矩阵,把它在屏幕上显示出来://show.c1.0#include"mex.h"#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){double*data;intM,N;inti,j;data=mxGetPr(prhs[0]);//获得指向矩阵的指针M=mxGetM(prhs[0]);//获得矩阵的行数N=mxGetN(prhs[0]);//获得矩阵的列数for(i=0;i<M;i++){for(j=0;j<N;j++)mexPrintf("%4.3f",data[j*M+i]);mexPrintf("\n");}}编译完成后,用下面的命令测试一下:a=1:10;b=[a;a+1];show(a)show(b)需要注意的是,在Matlab里,矩阵第一行是从1开始的,而在C语言中,第一行的序数为零,Matlab里的矩阵元素b(i,j)在传递到C中的一维数组大data后对应于data[j*M+i]。输入数据是在函数调用之前已经在Matlab里申请了内存的,由于mex函数与Matlab共用同一个地址空间,因而在prhs[]里传递指针就可以达到参数传递的目的。但是,输出参数却需要在mex函数内申请到内存空间,才能将指针放在plhs[]中传递出去。由于返回指针类型必须是mxArray,所以Matlab专门提供了一个函数:mxCreateDoubleMatrix来实现内存的申请,函数原型如下:mxArray*mxCreateDoubleMatrix(intm,intn,mxComplexityComplexFlag)m:待申请矩阵的行数n:待申请矩阵的列数为矩阵申请内存后,得到的是mxArray类型的指针,就可以放在plhs[]里传递回去了。但是对这个新矩阵的处理,却要在函数内完成,这时就需要用到前面介绍的mxGetPr。使用mxGetPr获得指向这个矩阵中数据区的指针(double类型)后,就可以对这个矩阵进行各种操作和运算了。下面的程序是在上面的show.c的基础上稍作改变得到的,功能是将输//reverse.c1.0#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){double*inData;double*outData;intM,N;inti,j;inData=mxGetPr(prhs[0]);M=mxGetM(prhs[0]);N=mxGetN(prhs[0]);plhs[0]=mxCreateDoubleMatrix(M,N,mxREAL);outData=mxGetPr(plhs[0]);for(i=0;i<M;i++)for(j=0;j<N;j++)outData[j*M+i]=inData[(N-1-j)*M+i];}当然,Matlab里使用到的并不是只有double类型这一种矩阵,还有字符串类型、稀疏矩阵、结构类型矩阵等等,并提供了相应的处理函数。本文用到编制mex程序中最经常遇到的一些函数,其余的详细情况清参考Apiref.pdf。通过前面两部分的介绍,大家对参数的输入和输出方法应该有了基本的了解。具备了这些知识,就能够满足一般的编程需要了。但这些程序还有些小的缺陷,以前面介绍的re由于前面的例程中没有对输入、输出参数的数目及类型进行检查,导致程序的容错性很差,以下程序则容错性较好#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){double*inData;double*outData;intM,N;//异常处理//异常处理if(nrhs!=1)mexErrMsgTxt("USAGE:b=reverse(a)\n");if(!mxIsDouble(prhs[0]))mexErrMsgTxt("theInputMatrixmustbedouble!\n");inData=mxGetPr(prhs[0]);M=mxGetM(prhs[0]);N=mxGetN(prhs[0]);plhs[0]=mxCreateDoubleMatrix(M,N,mxREAL);outData=mxGetPr(plhs[0]);for(i=0;i<M;i++)for(j=0;j<N;j++)outData[j*M+i]=inData[(N-1-j)*M+i];}在上面的异常处理中,使用了两个新的函数:mexErrMsgTxt和mxIsDouble。MexErrMsgTxt在给出出错提示的同时退出当前程序的运行。MxIsDouble则用于判断mxArray中的数据是否double类型。当然Matlab还提供了许多用于判断其他数据类型的函数,这里不加详述。需要说明的是,Matlab提供的API中,函数前缀有mex-和mx-两种。带mx-前缀的大多是对mxArray数据进行操作的函数,如mxIsDouble,mxCreateDoubleMatrix等等。而带mx前缀的则大多是与Matlab环境进行交互的函数,如mexPrintf,mxErrMsgTxt等等。了解了这一点,对在Apiref.pdf中查找所需的函数很有帮助。至此为止,使用C编写mex函数的基本过程已经介绍完了。
通过把耗时长的函数用c语言实现,并编译成mex函数可以加快执行速度。Matlab本身是不带c语言的编译器的,所以要求你的机器上已经安装有VC,BC或Watcom C中的一种。如果你在安装Matlab时已经设置过编译器,那么现在你应该就可以使用mex命令来编译c语言的程序了。如果当时没有选,就在Matlab里键入mex -setup,下面只要根据提示一步步设置就可以了。需要注意的是,较低版本的在设置编译器路径时,只能使用路径名称的8字符形式。比如我用的VC装在路径C:\PROGRAM FILES\DEVSTUDIO下,那在设置路径时就要写成:“C:\PROGRA~1”这样设置完之后,mex就可以执行了。为了测试你的路径设置正确与否,把下面的程序存为hello.c。/*hello.c*/#include "mex.h" void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { mexPrintf("hello,world!\n"); } 假设你把hello.c放在了C:\TEST\下,在Matlab里用CD C:\TEST\ 将当前目录改为C:\ TEST\(注意,仅将C:\TEST\加入搜索路径是没有用的)。现在敲:mex hello.c 如果一切顺利,编译应该在出现编译器提示信息后正常退出。如果你已将C:\TEST\加入了搜索路径,现在键入hello,程序会在屏幕上打出一行:hello,world! 看看C\TEST\目录下,你会发现多了一个文件:HELLO.DLL。这样,第一个mex函数就算完成了。分析hello.c,可以看到程序的结构是十分简单的,整个程序由一个接口子过程 mexFunction构成。void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) 前面提到过,Matlab的mex函数有一定的接口规范,就是指这nlhs:输出参数数目 plhs:指向输出参数的指针 nrhs:输入参数数目 例如,使用[a,b]=test(c,d,e)调用mex函数test时,传给test的这四个参数分别是 2,plhs,3,prhs其中: prhs[0]=c prhs[1]=d prhs[2]=e 当函数返回时,将会把你放在plhs[0],plhs[1]里的地址赋给a和b,达到返回数据的目的。 细心的你也许已经注意到,prhs[i]和plhs[i]都是指向类型mxArray类型数据的指针。 这个类型是在mex.h中定义的,事实上,在Matlab里大多数数据都是以这种类型存在。当然还有其他的数据类型,可以参考Apiguide.pdf里的介绍。 为了让大家能更直观地了解参数传递的过程,我们把hello.c改写一下,使它能根据输 入参数的变化给出不同的屏幕输出://hello.c 2.0 #include "mex.h" void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) {int i; i=mxGetScalar(prhs[0]); if(i==1) mexPrintf("hello,world!\n"); else mexPrintf("大家好!\n"); }将这个程序编译通过后,执行hello(1),屏幕上会打出: hello,world! 而hello(0)将会得到: 大家好! 现在,程序hello已经可以根据输入参数来给出相应的屏幕输出。在这个程序里,除了用到了屏幕输出函数mexPrintf(用法跟c里的printf函数几乎完全一样)外,还用到了一个函数:mxGetScalar,调用方式如下: i=mxGetScalar(prhs[0]); "Scalar"就是标量的意思。在Matlab里数据都是以数组的形式存在的,mxGetScalar的作用就是把通过prhs[0]传递进来的mxArray类型的指针指向的数据(标量)赋给C程序里的变量。这个变量本来应该是double类型的,通过强制类型转换赋给了整形变量i。既然有标量,显然还应该有矢量,否则矩阵就没法传了。看下面的程序: //hello.c 2.1 #include "mex.h" void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { int *i; i=mxGetPr(prhs[0]); if(i[0]==1) mexPrintf("hello,world!\n"); else mexPrintf("大家好!\n"); } 这样,就通过mxGetPr函数从指向mxArray类型数据的prhs[0]获得了指向double类型的指针。但是,还有个问题,如果输入的不是单个的数据,而是向量或矩阵,那该怎么处理呢 ?通过mxGetPr只能得到指向这个矩阵的指针,如果我们不知道这个矩阵的确切大小,就 没法对它进行计算。 为了解决这个问题,Matlab提供了两个函数mxGetM和mxGetN来获得传进来参数的行数 和列数。下面例程的功能很简单,就是获得输入的矩阵,把它在屏幕上显示出来: //show.c 1.0 #include "mex.h" #include "mex.h" void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { double *data; int M,N; int i,j; data=mxGetPr(prhs[0]); //获得指向矩阵的指针 M=mxGetM(prhs[0]); //获得矩阵的行数 N=mxGetN(prhs[0]); //获得矩阵的列数 for(i=0;i<M;i++) { for(j=0;j<N;j++) mexPrintf("%4.3f ",data[j*M+i]); mexPrintf("\n"); }} 编译完成后,用下面的命令测试一下: a=1:10; b=[a;a+1]; show(a) show(b) 需要注意的是,在Matlab里,矩阵第一行是从1开始的,而在C语言中,第一行的序数为零,Matlab里的矩阵元素b(i,j)在传递到C中的一维数组大data后对应于data[j*M+i] 。 输入数据是在函数调用之前已经在Matlab里申请了内存的,由于mex函数与Matlab共用同一个地址空间,因而在prhs[]里传递指针就可以达到参数传递的目的。但是,输出参数却需要在mex函数内申请到内存空间,才能将指针放在plhs[]中传递出去。由于返回指针类型必须是mxArray,所以Matlab专门提供了一个函数:mxCreateDoubleMatrix来实现内存的申请,函数原型如下: mxArray *mxCreateDoubleMatrix(int m, int n, mxComplexity ComplexFlag) m:待申请矩阵的行数 n:待申请矩阵的列数 为矩阵申请内存后,得到的是mxArray类型的指针,就可以放在plhs[]里传递回去了。但是对这个新矩阵的处理,却要在函数内完成,这时就需要用到前面介绍的mxGetPr。使用 mxGetPr获得指向这个矩阵中数据区的指针(double类型)后,就可以对这个矩阵进行各种操作和运算了。下面的程序是在上面的show.c的基础上稍作改变得到的,功能是将输 //reverse.c 1.0 #include "mex.h" void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { double *inData; double *outData; int M,N; int i,j; inData=mxGetPr(prhs[0]); M=mxGetM(prhs[0]); N=mxGetN(prhs[0]); plhs[0]=mxCreateDoubleMatrix(M,N,mxREAL); outData=mxGetPr(plhs[0]); for(i=0;i<M;i++) for(j=0;j<N;j++) outData[j*M+i]=inData[(N-1-j)*M+i]; } 当然,Matlab里使用到的并不是只有double类型这一种矩阵,还有字符串类型、稀疏矩阵、结构类型矩阵等等,并提供了相应的处理函数。本文用到编制mex程序中最经常遇到的一些函数,其余的详细情况清参考Apiref.pdf。 通过前面两部分的介绍,大家对参数的输入和输出方法应该有了基本的了解。具备了这些知识,就能够满足一般的编程需要了。但这些程序还有些小的缺陷,以前面介绍的re由于前面的例程中没有对输入、输出参数的数目及类型进行检查,导致程序的容错性很差,以下程序则容错性较好#include "mex.h" void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[]) { double *inData; double *outData; int M,N; //异常处理 //异常处理 if(nrhs!=1) mexErrMsgTxt("USAGE: b=reverse(a)\n"); if(!mxIsDouble(prhs[0])) mexErrMsgTxt("the Input Matrix must be double!\n"); inData=mxGetPr(prhs[0]); M=mxGetM(prhs[0]); N=mxGetN(prhs[0]); plhs[0]=mxCreateDoubleMatrix(M,N,mxREAL); outData=mxGetPr(plhs[0]); for(i=0;i<M;i++) for(j=0;j<N;j++) outData[j*M+i]=inData[(N-1-j)*M+i]; } 在上面的异常处理中,使用了两个新的函数:mexErrMsgTxt和mxIsDouble。MexErrMsgTxt在给出出错提示的同时退出当前程序的运行。MxIsDouble则用于判断mxArray中的数据是否double类型。当然Matlab还提供了许多用于判断其他数据类型的函数,这里不加详述。 需要说明的是,Matlab提供的API中,函数前缀有mex-和mx-两种。带mx-前缀的大多是对mxArray数据进行操作的函数,如mxIsDouble,mxCreateDoubleMatrix等等。而带mx前缀的则大多是与Matlab环境进行交互的函数,如mexPrintf,mxErrMsgTxt等等。了解了这一点,对在Apiref.pdf中查找所需的函数很有帮助。至此为止,使用C编写mex函数的基本过程已经介绍完了。
通过把耗时长的函数用c语言实现,并编译成mex函数可以加快执行速度。Matlab本身是不带c语言的编译器的,所以要求你的机器上已经安装有VC,BC或WatcomC中的一种。如果你在安装Matlab时已经设置过编译器,那么现在你应该就可以使用mex命令来编译c语言的程序了。如果当时没有选,就在Matlab里键入mex-setup,下面只要根据提示一步步设置就可以了。需要注意的是,较低版本的在设置编译器路径时,只能使用路径名称的8字符形式。比如我用的VC装在路径C:\PROGRAMFILES\DEVSTUDIO下,那在设置路径时就要写成:“C:\PROGRA~1”这样设置完之后,mex就可以执行了。为了测试你的路径设置正确与否,把下面的程序存为hello.c。/*hello.c*/#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){mexPrintf("hello,world!\n");}假设你把hello.c放在了C:\TEST\下,在Matlab里用CDC:\TEST\将当前目录改为C:\TEST\(注意,仅将C:\TEST\加入搜索路径是没有用的)。现在敲:mexhello.c如果一切顺利,编译应该在出现编译器提示信息后正常退出。如果你已将C:\TEST\加入了搜索路径,现在键入hello,程序会在屏幕上打出一行:hello,world!看看C\TEST\目录下,你会发现多了一个文件:HELLO.DLL。这样,第一个mex函数就算完成了。分析hello.c,可以看到程序的结构是十分简单的,整个程序由一个接口子过程mexFunction构成。voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[])前面提到过,Matlab的mex函数有一定的接口规范,就是指这nlhs:输出参数数目plhs:指向输出参数的指针nrhs:输入参数数目例如,使用[a,b]=test(c,d,e)调用mex函数test时,传给test的这四个参数分别是2,plhs,3,prhs其中:prhs[0]=cprhs[1]=dprhs[2]=e当函数返回时,将会把你放在plhs[0],plhs[1]里的地址赋给a和b,达到返回数据的目的。细心的你也许已经注意到,prhs[i]和plhs[i]都是指向类型mxArray类型数据的指针。这个类型是在mex.h中定义的,事实上,在Matlab里大多数数据都是以这种类型存在。当然还有其他的数据类型,可以参考Apiguide.pdf里的介绍。为了让大家能更直观地了解参数传递的过程,我们把hello.c改写一下,使它能根据输入参数的变化给出不同的屏幕输出://hello.c2.0#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){inti;i=mxGetScalar(prhs[0]);if(i==1)mexPrintf("hello,world!\n");elsemexPrintf("大家好!\n");}将这个程序编译通过后,执行hello(1),屏幕上会打出:hello,world!而hello(0)将会得到:大家好!现在,程序hello已经可以根据输入参数来给出相应的屏幕输出。在这个程序里,除了用到了屏幕输出函数mexPrintf(用法跟c里的printf函数几乎完全一样)外,还用到了一个函数:mxGetScalar,调用方式如下:i=mxGetScalar(prhs[0]);"Scalar"就是标量的意思。在Matlab里数据都是以数组的形式存在的,mxGetScalar的作用就是把通过prhs[0]传递进来的mxArray类型的指针指向的数据(标量)赋给C程序里的变量。这个变量本来应该是double类型的,通过强制类型转换赋给了整形变量i。既然有标量,显然还应该有矢量,否则矩阵就没法传了。看下面的程序://hello.c2.1#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){int*i;i=mxGetPr(prhs[0]);if(i[0]==1)mexPrintf("hello,world!\n");elsemexPrintf("大家好!\n");}这样,就通过mxGetPr函数从指向mxArray类型数据的prhs[0]获得了指向double类型的指针。但是,还有个问题,如果输入的不是单个的数据,而是向量或矩阵,那该怎么处理呢?通过mxGetPr只能得到指向这个矩阵的指针,如果我们不知道这个矩阵的确切大小,就没法对它进行计算。为了解决这个问题,Matlab提供了两个函数mxGetM和mxGetN来获得传进来参数的行数和列数。下面例程的功能很简单,就是获得输入的矩阵,把它在屏幕上显示出来://show.c1.0#include"mex.h"#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){double*data;intM,N;inti,j;data=mxGetPr(prhs[0]);//获得指向矩阵的指针M=mxGetM(prhs[0]);//获得矩阵的行数N=mxGetN(prhs[0]);//获得矩阵的列数for(i=0;i<M;i++){for(j=0;j<N;j++)mexPrintf("%4.3f",data[j*M+i]);mexPrintf("\n");}}编译完成后,用下面的命令测试一下:a=1:10;b=[a;a+1];show(a)show(b)需要注意的是,在Matlab里,矩阵第一行是从1开始的,而在C语言中,第一行的序数为零,Matlab里的矩阵元素b(i,j)在传递到C中的一维数组大data后对应于data[j*M+i]。输入数据是在函数调用之前已经在Matlab里申请了内存的,由于mex函数与Matlab共用同一个地址空间,因而在prhs[]里传递指针就可以达到参数传递的目的。但是,输出参数却需要在mex函数内申请到内存空间,才能将指针放在plhs[]中传递出去。由于返回指针类型必须是mxArray,所以Matlab专门提供了一个函数:mxCreateDoubleMatrix来实现内存的申请,函数原型如下:mxArray*mxCreateDoubleMatrix(intm,intn,mxComplexityComplexFlag)m:待申请矩阵的行数n:待申请矩阵的列数为矩阵申请内存后,得到的是mxArray类型的指针,就可以放在plhs[]里传递回去了。但是对这个新矩阵的处理,却要在函数内完成,这时就需要用到前面介绍的mxGetPr。使用mxGetPr获得指向这个矩阵中数据区的指针(double类型)后,就可以对这个矩阵进行各种操作和运算了。下面的程序是在上面的show.c的基础上稍作改变得到的,功能是将输//reverse.c1.0#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){double*inData;double*outData;intM,N;inti,j;inData=mxGetPr(prhs[0]);M=mxGetM(prhs[0]);N=mxGetN(prhs[0]);plhs[0]=mxCreateDoubleMatrix(M,N,mxREAL);outData=mxGetPr(plhs[0]);for(i=0;i<M;i++)for(j=0;j<N;j++)outData[j*M+i]=inData[(N-1-j)*M+i];}当然,Matlab里使用到的并不是只有double类型这一种矩阵,还有字符串类型、稀疏矩阵、结构类型矩阵等等,并提供了相应的处理函数。本文用到编制mex程序中最经常遇到的一些函数,其余的详细情况清参考Apiref.pdf。通过前面两部分的介绍,大家对参数的输入和输出方法应该有了基本的了解。具备了这些知识,就能够满足一般的编程需要了。但这些程序还有些小的缺陷,以前面介绍的re由于前面的例程中没有对输入、输出参数的数目及类型进行检查,导致程序的容错性很差,以下程序则容错性较好#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){double*inData;double*outData;intM,N;//异常处理//异常处理if(nrhs!=1)mexErrMsgTxt("USAGE:b=reverse(a)\n");if(!mxIsDouble(prhs[0]))mexErrMsgTxt("theInputMatrixmustbedouble!\n");inData=mxGetPr(prhs[0]);M=mxGetM(prhs[0]);N=mxGetN(prhs[0]);plhs[0]=mxCreateDoubleMatrix(M,N,mxREAL);outData=mxGetPr(plhs[0]);for(i=0;i<M;i++)for(j=0;j<N;j++)outData[j*M+i]=inData[(N-1-j)*M+i];}在上面的异常处理中,使用了两个新的函数:mexErrMsgTxt和mxIsDouble。MexErrMsgTxt在给出出错提示的同时退出当前程序的运行。MxIsDouble则用于判断mxArray中的数据是否double类型。当然Matlab还提供了许多用于判断其他数据类型的函数,这里不加详述。需要说明的是,Matlab提供的API中,函数前缀有mex-和mx-两种。带mx-前缀的大多是对mxArray数据进行操作的函数,如mxIsDouble,mxCreateDoubleMatrix等等。而带mx前缀的则大多是与Matlab环境进行交互的函数,如mexPrintf,mxErrMsgTxt等等。了解了这一点,对在Apiref.pdf中查找所需的函数很有帮助。至此为止,使用C编写mex函数的基本过程已经介绍完了。
通过把耗时长的函数用c语言实现,并编译成mex函数可以加快执行速度。Matlab本身是不带c语言的编译器的,所以要求你的机器上已经安装有VC,BC或WatcomC中的一种。如果你在安装Matlab时已经设置过编译器,那么现在你应该就可以使用mex命令来编译c语言的程序了。如果当时没有选,就在Matlab里键入mex-setup,下面只要根据提示一步步设置就可以了。需要注意的是,较低版本的在设置编译器路径时,只能使用路径名称的8字符形式。比如我用的VC装在路径C:\PROGRAMFILES\DEVSTUDIO下,那在设置路径时就要写成:“C:\PROGRA~1”这样设置完之后,mex就可以执行了。为了测试你的路径设置正确与否,把下面的程序存为hello.c。/*hello.c*/#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){mexPrintf("hello,world!\n");}假设你把hello.c放在了C:\TEST\下,在Matlab里用CDC:\TEST\将当前目录改为C:\TEST\(注意,仅将C:\TEST\加入搜索路径是没有用的)。现在敲:mexhello.c如果一切顺利,编译应该在出现编译器提示信息后正常退出。如果你已将C:\TEST\加入了搜索路径,现在键入hello,程序会在屏幕上打出一行:hello,world!看看C\TEST\目录下,你会发现多了一个文件:HELLO.DLL。这样,第一个mex函数就算完成了。分析hello.c,可以看到程序的结构是十分简单的,整个程序由一个接口子过程mexFunction构成。voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[])前面提到过,Matlab的mex函数有一定的接口规范,就是指这nlhs:输出参数数目plhs:指向输出参数的指针nrhs:输入参数数目例如,使用[a,b]=test(c,d,e)调用mex函数test时,传给test的这四个参数分别是2,plhs,3,prhs其中:prhs[0]=cprhs[1]=dprhs[2]=e当函数返回时,将会把你放在plhs[0],plhs[1]里的地址赋给a和b,达到返回数据的目的。细心的你也许已经注意到,prhs[i]和plhs[i]都是指向类型mxArray类型数据的指针。这个类型是在mex.h中定义的,事实上,在Matlab里大多数数据都是以这种类型存在。当然还有其他的数据类型,可以参考Apiguide.pdf里的介绍。为了让大家能更直观地了解参数传递的过程,我们把hello.c改写一下,使它能根据输入参数的变化给出不同的屏幕输出://hello.c2.0#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){inti;i=mxGetScalar(prhs[0]);if(i==1)mexPrintf("hello,world!\n");elsemexPrintf("大家好!\n");}将这个程序编译通过后,执行hello(1),屏幕上会打出:hello,world!而hello(0)将会得到:大家好!现在,程序hello已经可以根据输入参数来给出相应的屏幕输出。在这个程序里,除了用到了屏幕输出函数mexPrintf(用法跟c里的printf函数几乎完全一样)外,还用到了一个函数:mxGetScalar,调用方式如下:i=mxGetScalar(prhs[0]);"Scalar"就是标量的意思。在Matlab里数据都是以数组的形式存在的,mxGetScalar的作用就是把通过prhs[0]传递进来的mxArray类型的指针指向的数据(标量)赋给C程序里的变量。这个变量本来应该是double类型的,通过强制类型转换赋给了整形变量i。既然有标量,显然还应该有矢量,否则矩阵就没法传了。看下面的程序://hello.c2.1#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){int*i;i=mxGetPr(prhs[0]);if(i[0]==1)mexPrintf("hello,world!\n");elsemexPrintf("大家好!\n");}这样,就通过mxGetPr函数从指向mxArray类型数据的prhs[0]获得了指向double类型的指针。但是,还有个问题,如果输入的不是单个的数据,而是向量或矩阵,那该怎么处理呢?通过mxGetPr只能得到指向这个矩阵的指针,如果我们不知道这个矩阵的确切大小,就没法对它进行计算。为了解决这个问题,Matlab提供了两个函数mxGetM和mxGetN来获得传进来参数的行数和列数。下面例程的功能很简单,就是获得输入的矩阵,把它在屏幕上显示出来://show.c1.0#include"mex.h"#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){double*data;intM,N;inti,j;data=mxGetPr(prhs[0]);//获得指向矩阵的指针M=mxGetM(prhs[0]);//获得矩阵的行数N=mxGetN(prhs[0]);//获得矩阵的列数for(i=0;i<M;i++){for(j=0;j<N;j++)mexPrintf("%4.3f",data[j*M+i]);mexPrintf("\n");}}编译完成后,用下面的命令测试一下:a=1:10;b=[a;a+1];show(a)show(b)需要注意的是,在Matlab里,矩阵第一行是从1开始的,而在C语言中,第一行的序数为零,Matlab里的矩阵元素b(i,j)在传递到C中的一维数组大data后对应于data[j*M+i]。输入数据是在函数调用之前已经在Matlab里申请了内存的,由于mex函数与Matlab共用同一个地址空间,因而在prhs[]里传递指针就可以达到参数传递的目的。但是,输出参数却需要在mex函数内申请到内存空间,才能将指针放在plhs[]中传递出去。由于返回指针类型必须是mxArray,所以Matlab专门提供了一个函数:mxCreateDoubleMatrix来实现内存的申请,函数原型如下:mxArray*mxCreateDoubleMatrix(intm,intn,mxComplexityComplexFlag)m:待申请矩阵的行数n:待申请矩阵的列数为矩阵申请内存后,得到的是mxArray类型的指针,就可以放在plhs[]里传递回去了。但是对这个新矩阵的处理,却要在函数内完成,这时就需要用到前面介绍的mxGetPr。使用mxGetPr获得指向这个矩阵中数据区的指针(double类型)后,就可以对这个矩阵进行各种操作和运算了。下面的程序是在上面的show.c的基础上稍作改变得到的,功能是将输//reverse.c1.0#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){double*inData;double*outData;intM,N;inti,j;inData=mxGetPr(prhs[0]);M=mxGetM(prhs[0]);N=mxGetN(prhs[0]);plhs[0]=mxCreateDoubleMatrix(M,N,mxREAL);outData=mxGetPr(plhs[0]);for(i=0;i<M;i++)for(j=0;j<N;j++)outData[j*M+i]=inData[(N-1-j)*M+i];}当然,Matlab里使用到的并不是只有double类型这一种矩阵,还有字符串类型、稀疏矩阵、结构类型矩阵等等,并提供了相应的处理函数。本文用到编制mex程序中最经常遇到的一些函数,其余的详细情况清参考Apiref.pdf。通过前面两部分的介绍,大家对参数的输入和输出方法应该有了基本的了解。具备了这些知识,就能够满足一般的编程需要了。但这些程序还有些小的缺陷,以前面介绍的re由于前面的例程中没有对输入、输出参数的数目及类型进行检查,导致程序的容错性很差,以下程序则容错性较好#include"mex.h"voidmexFunction(intnlhs,mxArray*plhs[],intnrhs,constmxArray*prhs[]){double*inData;double*outData;intM,N;//异常处理//异常处理if(nrhs!=1)mexErrMsgTxt("USAGE:b=reverse(a)\n");if(!mxIsDouble(prhs[0]))mexErrMsgTxt("theInputMatrixmustbedouble!\n");inData=mxGetPr(prhs[0]);M=mxGetM(prhs[0]);N=mxGetN(prhs[0]);plhs[0]=mxCreateDoubleMatrix(M,N,mxREAL);outData=mxGetPr(plhs[0]);for(i=0;i<M;i++)for(j=0;j<N;j++)outData[j*M+i]=inData[(N-1-j)*M+i];}在上面的异常处理中,使用了两个新的函数:mexErrMsgTxt和mxIsDouble。MexErrMsgTxt在给出出错提示的同时退出当前程序的运行。MxIsDouble则用于判断mxArray中的数据是否double类型。当然Matlab还提供了许多用于判断其他数据类型的函数,这里不加详述。需要说明的是,Matlab提供的API中,函数前缀有mex-和mx-两种。带mx-前缀的大多是对mxArray数据进行操作的函数,如mxIsDouble,mxCreateDoubleMatrix等等。而带mx前缀的则大多是与Matlab环境进行交互的函数,如mexPrintf,mxErrMsgTxt等等。了解了这一点,对在Apiref.pdf中查找所需的函数很有帮助。至此为止,使用C编写mex函数的基本过程已经介绍完了。