转it行业,从哪一个开始比较好,大数据还是java?

高手,请分析下,转it行业,从哪一个开始比较好,大数据还是java?
最新回答
星河万里

2024-08-14 05:14:04

建议先学习java编程,后面对逻辑代码有一定理解后再专项大数据

  1. 门槛。大数据比 Java 高一点,因为除了对数据库的操作之外,要学习大数据生态的东西,需要会分布式、数仓、中间件等知识。它比机器学习低一些,不需要你会很多的机器学习算法和数学知识,而像机器学习算法和数学知识是需要长时间的磨炼和沉淀,所以做这块的研究生和博士居多。

  2. 薪资高。这个估计才是吸引大部分人学习的原因。同一家公司同一级别,普通开发岗和大数据开发薪资还是会差一个档次的,具体多少视公司而定。

  3. 积累性和挑战性。在我学习群里面,不乏一些在传统企业或者国企的资深开发者,但是他们对自己的职业也迷茫和担忧,在群里经常讨论一些分布式,Redis、Zookeeper等知识的时候,他们显的格格不入。因为他们长期在企业里 CRUD(增删改查),与现在互联网技术发展产生隔阂了,既憧憬又畏惧。

  4. 推动你现有岗位的发展。学习群里很多人问过,我从事前端的学大数据有什么用?我从事运维,学大数据能帮我什么?等等。

  5. 大数据+现有岗位是一个趋势。大数据来临的时候,你前端不用做一些静态化,或者一些缓存机制吗?会一些 Hive、Hadoop,做可视化或和后端对接的时候是不是更有优势呢?后端学一些大数据的觉得是必要的,例如Kafka、Zookeeper等分布式、缓存相关的数据存储和传输是进阶 Java 必会的,让你在现有企业需要转型的时候可以直接就上。而运维呢?分布式集群运维,各个大数据平台上的节点运维,这不是一个趋势吗?

  6. 什么都不学,认为现在的公司用不到,等公司要用到的时候,你会,可能就是一个负责人或者给你升职加薪巴结你试试,因为这样成本小,知根知底。不会呢,就直接招会的人过来了,而你就危险了。

  7. 过渡到机器学习人工智能的捷径。随着科技的进步,包括硬件和软件,机器学习的使用门槛会越来越低,为什么这里强调使用。因为研究部门在每一家公司都是极少数的,更多的是在调库,调参。而随着硬件的进步,很多算法都是封装好的,可以进行傻瓜化操作,我们只需要给他喂数据。

    这是个人想法,希望能帮助你。