在岁月中跋涉,每个人都有自己的故事,看淡心境才会秀丽,看开心情才会明媚。累时歇一歇,随清风漫舞,烦时静一静,与花草凝眸,急时缓一缓,和自己微笑。
本文实例讲述了Python数据结构与算法之二叉树结构定义与遍历方法。分享给大家供大家参考,具体如下:
先序遍历,中序遍历,后序遍历 ,区别在于三条核心语句的位置
层序遍历 采用队列的遍历操作第一次访问根,在访问根的左孩子,接着访问根的有孩子,然后下一层 自左向右一一访问同层的结点
# 先序遍历 # 访问结点,遍历左子树,如果左子树为空,则遍历右子树, # 如果右子树为空,则向上走到一个可以向右走的结点,继续该过程 preorder(t): if t: print t.value preorder t.L preorder t.R # 中序遍历 # 从根开始,一直走向左下方,直到无结点可以走则停下,访问该节点 # 然后走向右下方到结点,继续走向左下方:如果结点无右孩子,则向上走回父亲结点 inorder(t): inorder(t.L) print t.value inorder(t.R) # 后序遍历 inorder(t): inorder(t.L) inorder(t.R) print t.value # 二叉树结点类型 class BTNode: def __init__(self,value,lft=None,rgt=None): self.value = value self.lft = lft # 结点左分支 BTNode self.rgt = rgt # 结点右分支 BTNode
为了方便起见,定义一些打印操作
class BinTree(): def __init__(self): self.root = None # 创建一个空的二叉树 def isEmpty(self): # 判断二叉树是否为空 if self.root is None: return True else: return False def makeBT(self,bt,L=None,R=None): # 从当前结点创建二叉树 bt.lft = L bt.rgt = R def returnBTdict(self): # 返回二叉树的字典模式 if self.isEmpty(): return None def rec(bt=None,R=True): if R==True: bt = self.root return {'root':{'value':bt.value,"L":rec(bt.lft,False), "R":rec(bt.rgt,False)} } else: if bt==None: return None else: return {"value":bt.value, "L":rec(bt.lft,False) if bt.lft != None else None, "R":rec(bt.rgt,False) if bt.rgt != None else None} return None return rec() def __repr__(self): # 将二叉树结构打印为字典结构 return str(self.returnBTdict())
下面是各种遍历方法,添加到树的类中
def printT_VLR(self,bt=None,rec_count = 0): # 输出二叉树结构(先序遍历) # rec_count 用于计算递归深度 以便输出最后的换行符 """ # 先序遍历 # 访问结点,遍历左子树,如果左子树为空,则遍历右子树, # 如果右子树为空,则向上走到一个可以向右走的结点,继续该过程 preorder(t): if t: print t.value preorder t.L preorder t.R """ if bt==None: bt = self.root print bt.value, btL, btR = bt.lft, bt.rgt if btL != None: print btL.value,; rec_count += 1; self.printT_VLR(btL,rec_count); rec_count -= 1 if btR != None: print btR.value,; rec_count += 1; self.printT_VLR(btR,rec_count); rec_count -= 1 if rec_count == 0: print "\n" def printT_LVR(self,bt=None): """ # 中序遍历 # 从根开始,一直走向左下方,直到无结点可以走则停下,访问该节点 # 然后走向右下方到结点,继续走向左下方:如果结点无右孩子,则向上走回父亲结点 inorder(t): inorder(t.L) print t.value inorder(t.R) """ if bt==None: bt = self.root btL, btR = bt.lft, bt.rgt if btL != None: self.printT_LVR(btL) print bt.value, if btR != None: self.printT_LVR(btR) def printT_LRV(self,bt=None): """ # 后序遍历 inorder(t): inorder(t.L) inorder(t.R) print t.value """ if bt==None: bt = self.root btL, btR = bt.lft, bt.rgt if btL != None: self.printT_LRV(btL) if btR != None: self.printT_LRV(btR) print bt.value, def printT_levelorder(self): """ 层序遍历 采用队列的遍历操作 第一次访问根,在访问根的左孩子,接着访问根的有孩子,然后下一层 自左向右一一访问同层的结点 """ btdict = self.returnBTdict() q = [] q.append(btdict['root']) while q: tn = q.pop(0) # 从队列中弹出一个结点(也是一个字典) print tn["value"], if tn["L"]!=None: q.append(tn["L"]) if tn["R"]!=None: q.append(tn["R"])
测试打印效果
def test(): bt = BinTree() # btns = [BTNode(v) for v in "+*E*D/CAB"] # 层序输入 # bt.root = btns[0] # bt.makeBT(btns[0], L=btns[1], R=btns[2]) # bt.makeBT(btns[1], L=btns[3], R=btns[4]) # bt.makeBT(btns[3], L=btns[5], R=btns[6]) # bt.makeBT(btns[5], L=btns[7], R=btns[8]) btns = [BTNode(v) for v in [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]] bt.root = btns[0] bt.makeBT(btns[0], L=btns[1], R=btns[2]) bt.makeBT(btns[1], L=btns[3], R=btns[4]) bt.makeBT(btns[2], L=btns[5], R=btns[6]) bt.makeBT(btns[3], L=btns[7], R=btns[8]) bt.makeBT(btns[4], L=btns[9], R=btns[10]) bt.makeBT(btns[5], L=btns[11], R=btns[12]) bt.makeBT(btns[6], L=btns[13], R=btns[14])
输出:
{'root': {'R': {'R': {'R': {'R': None, 'L': None, 'value': 15}, 'L': {'R': None, 'L': None, 'value': 14}, 'value': 7}, 'L': {'R': {'R': None, 'L': None, 'value': 13}, 'L': {'R': None, 'L': None, 'value': 12}, 'value': 6}, 'value': 3}, 'L': {'R': {'R': {'R': None, 'L': None, 'value': 11}, 'L': {'R': None, 'L': None, 'value': 10}, 'value': 5}, 'L': {'R': {'R': None, 'L': None, 'value': 9}, 'L': {'R': None, 'L': None, 'value': 8}, 'value': 4}, 'value': 2}, 'value': 1}}
希望本文所述对大家Python程序设计有所帮助。
到此这篇关于Python数据结构与算法之二叉树结构定义与遍历方法详解就介绍到这了。抱最大的希望,为最大的努力,做最坏的打算。更多相关Python数据结构与算法之二叉树结构定义与遍历方法详解内容请查看相关栏目,小编编辑不易,再次感谢大家的支持!