弃我而去而又重返的人,我会把他忽略。因为他再也给不了我一颗完整的心。将来的一面,我们必须容忍爱人的所有面。
本文实例讲述了Python数据结构与算法之图的最短路径(Dijkstra算法)。分享给大家供大家参考,具体如下:
# coding:utf-8 # Dijkstra算法——通过边实现松弛 # 指定一个点到其他各顶点的路径——单源最短路径 # 初始化图参数 G = {1:{1:0, 2:1, 3:12}, 2:{2:0, 3:9, 4:3}, 3:{3:0, 5:5}, 4:{3:4, 4:0, 5:13, 6:15}, 5:{5:0, 6:4}, 6:{6:0}} # 每次找到离源点最近的一个顶点,然后以该顶点为重心进行扩展 # 最终的到源点到其余所有点的最短路径 # 一种贪婪算法 def Dijkstra(G,v0,INF=999): """ 使用 Dijkstra 算法计算指定点 v0 到图 G 中任意点的最短路径的距离 INF 为设定的无限远距离值 此方法不能解决负权值边的图 """ book = set() minv = v0 # 源顶点到其余各顶点的初始路程 dis = dict((k,INF) for k in G.keys()) dis[v0] = 0 while len(book)<len(G): book.add(minv) # 确定当期顶点的距离 for w in G[minv]: # 以当前点的中心向外扩散 if dis[minv] + G[minv][w] < dis[w]: # 如果从当前点扩展到某一点的距离小与已知最短距离 dis[w] = dis[minv] + G[minv][w] # 对已知距离进行更新 new = INF # 从剩下的未确定点中选择最小距离点作为新的扩散点 for v in dis.keys(): if v in book: continue if dis[v] < new: new = dis[v] minv = v return dis dis = Dijkstra(G,v0=1) print("测试结果:") print dis.values()
运行结果:
希望本文所述对大家Python程序设计有所帮助。
到此这篇关于Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例就介绍到这了。人生坎坎坷坷,跌跌撞撞那是在所难免。但是,不论跌了多少次,你都要坚强地再次站起来。任何时候,无论你面临着生命的何等困惑,抑或经受着多少挫折,无论道路如何的艰难,无论希望变得如何渺茫,请你不要绝望,再试一次,成功一定属于你!更多相关Python数据结构与算法之图的最短路径(Dijkstra算法)完整实例内容请查看相关栏目,小编编辑不易,再次感谢大家的支持!