叶子小小的,碧绿碧绿的,花儿小小的,好可爱。紫红色的玫瑰花在风中翩翩起舞,玫瑰花树枝上还有调皮又可爱的小刺,你可要当心哦!你看,那个大仙人球旁围着8个小仙人球,好像一家人聚在一起,多欢快呀!
使用matplotlib.tri.CubicTriInterpolator.演示变化率计算:
完整实例:
from matplotlib.tri import ( Triangulation, UniformTriRefiner, CubicTriInterpolator) import matplotlib.pyplot as plt import matplotlib.cm as cm import numpy as np #----------------------------------------------------------------------------- # Electrical potential of a dipole #----------------------------------------------------------------------------- def dipole_potential(x, y): """ The electric dipole potential V """ r_sq = x**2 + y**2 theta = np.arctan2(y, x) z = np.cos(theta)/r_sq return (np.max(z) - z) / (np.max(z) - np.min(z)) #----------------------------------------------------------------------------- # Creating a Triangulation #----------------------------------------------------------------------------- # First create the x and y coordinates of the points. n_angles = 30 n_radii = 10 min_radius = 0.2 radii = np.linspace(min_radius, 0.95, n_radii) angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False) angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1) angles[:, 1::2] += np.pi / n_angles x = (radii*np.cos(angles)).flatten() y = (radii*np.sin(angles)).flatten() V = dipole_potential(x, y) # Create the Triangulation; no triangles specified so Delaunay triangulation # created. triang = Triangulation(x, y) # Mask off unwanted triangles. triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1), y[triang.triangles].mean(axis=1)) < min_radius) #----------------------------------------------------------------------------- # Refine data - interpolates the electrical potential V #----------------------------------------------------------------------------- refiner = UniformTriRefiner(triang) tri_refi, z_test_refi = refiner.refine_field(V, subdiv=3) #----------------------------------------------------------------------------- # Computes the electrical field (Ex, Ey) as gradient of electrical potential #----------------------------------------------------------------------------- tci = CubicTriInterpolator(triang, -V) # Gradient requested here at the mesh nodes but could be anywhere else: (Ex, Ey) = tci.gradient(triang.x, triang.y) E_norm = np.sqrt(Ex**2 + Ey**2) #----------------------------------------------------------------------------- # Plot the triangulation, the potential iso-contours and the vector field #----------------------------------------------------------------------------- fig, ax = plt.subplots() ax.set_aspect('equal') # Enforce the margins, and enlarge them to give room for the vectors. ax.use_sticky_edges = False ax.margins(0.07) ax.triplot(triang, color='0.8') levels = np.arange(0., 1., 0.01) cmap = cm.get_cmap(name='hot', lut=None) ax.tricontour(tri_refi, z_test_refi, levels=levels, cmap=cmap, linewidths=[2.0, 1.0, 1.0, 1.0]) # Plots direction of the electrical vector field ax.quiver(triang.x, triang.y, Ex/E_norm, Ey/E_norm, units='xy', scale=10., zorder=3, color='blue', width=0.007, headwidth=3., headlength=4.) ax.set_title('Gradient plot: an electrical dipole') plt.show()
总结
以上就是本文关于python+matplotlib演示电偶极子实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!