摘要:
在图像识别当中,一般步骤是先读取图片,然后把图片数据转化成tensor格式,再输送到网络中去。本文将介绍如何把图片转换成tensor。
一、数据转换
把图片转成成torch的tensor数据,一般采用函数:torchvision.transforms。通过一个例子说明,先用opencv读取一张图片,然后在转换;注意一点是:opencv储存图片的格式和torch的储存方式不一样,opencv储存图片格式是(H,W,C),而torch储存的格式是(C,H,W)。
import torchvision.transforms as transforms import cv2 as cv img = cv.imread('image/000001.jpg') print(img.shape) # numpy数组格式为(H,W,C) transf = transforms.ToTensor() img_tensor = transf(img) # tensor数据格式是torch(C,H,W) print(img_tensor.size())
注意:使用torchvision.transforms时要注意一下,其子函数 ToTensor() 是没有参数输入的,以下用法是会报错的
img_tensor = transforms.ToTensor(img)
必须是先定义和赋值转换函数,再调用并输入参数,正确用法:
img = cv.imread('image/000001.jpg') transf = transforms.ToTensor() img_tensor = transf(img)
再转换过程中正则化
在使用 transforms.ToTensor() 进行图片数据转换过程中会对图像的像素值进行正则化,即一般读取的图片像素值都是8 bit 的二进制,那么它的十进制的范围为 [0, 255],而正则化会对每个像素值除以255,也就是把像素值正则化成 [0.0, 1.0]的范围。通过例子理解一下:
import torchvision.transforms as transforms import cv2 as cv img = cv.imread('image/000001.jpg') transf = transforms.ToTensor() img_tensor = transf(img) print('opencv', img) print('torch', img_tensor)
三、自行修改正则化的范围
使用transforms.Compose函数可以自行修改正则化的范围,下面举个例子正则化成 [-1.0, 1.0]
transf2 = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ] ) img_tensor2 = transf2(img) print(img_tensor2)
计算方式就是:
C=(C-mean)/ std
C为每个通道的所有像素值,彩色图片为三通道图像(BGR),所以mean和std是三个数的数组。
使用transforms.ToTensor()时已经正则化成 [0,0, 0,1]了,那么(0.0 - 0.5)/0.5=-1.0,(1.0 - 0.5)/0.5=1.0,所以正则化成 [-1.0, 1.0]
补充:Python: 记录一个关于图片直接转化为pytorch.tensor和numpy.array的不同之处的问题
img = Image.open(img_path).convert("RGB") img2 = torchvision.transforms.functional.to_tensor(img) print(img2) img1 = np.array(img) print(img1)
输出是这样的:
不仅shape不一样,而且值也是不一样的。
解释如下:
tensor = torch.from_numpy(np.asarray(PIL.Image.open(path))).permute(2, 0, 1).float() / 255 tensor = torchvision.transforms.functional.to_tensor(PIL.Image.open(path)) # 两种方法是一样的
PIL.Image.open()得到HWC格式,直接使用numpy 去转换得到(h,w,c)格式,而用to_tensor得到(c,h,w)格式且值已经除了255。
byte()相当于to(torch.uint8),tensor.numpy()是把tensor 转化为numpy.array格式。
在这里需要注意的是PIL和OPENCV的图像读取得到的格式都是HWC格式,一般模型训练使用的是CHW格式, H为Y轴是竖直方向,W为X轴水平方向。
且torchvision.transforms.functional.to_tensor()对所有输入都是有变换操作。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持。如有错误或未考虑完全的地方,望不吝赐教。