在用python绘图的时候,经常由于数据的原因导致画出来的图折线分界过于明显,因此需要对原数据绘制的折线进行平滑处理,本文介绍利用插值法进行平滑曲线处理:
实现所需的库
numpy、scipy、matplotlib
插值法实现
nearest:最邻近插值法
zero:阶梯插值
slinear:线性插值
quadratic、cubic:2、3阶B样条曲线插值
-
拟合和插值的区别
1、插值:简单来说,插值就是根据原有数据进行填充,最后生成的曲线一定过原有点。
2拟合:拟合是通过原有数据,调整曲线系数,使得曲线与已知点集的差别(最小二乘)最小,最后生成的曲线不一定经过原有点。
代码实现
import matplotlib.pyplot as plt import numpy as np from scipy import interpolate #设置距离 x =np.array([0, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 70, 8, 9,10]) #设置相似度 y =np.array([0.8579087793827057, 0.8079087793827057, 0.7679087793827057, 0.679087793827057, 0.5579087793827057, 0.4579087793827057, 0.3079087793827057, 0.3009087793827057, 0.2579087793827057, 0.2009087793827057, 0.1999087793827057, 0.1579087793827057, 0.0099087793827057, 0.0079087793827057, 0.0069087793827057, 0.0019087793827057, 0.0000087793827057]) #插值法之后的x轴值,表示从0到10间距为0.5的200个数 xnew =np.arange(0,10,0.1) #实现函数 func = interpolate.interp1d(x,y,kind='cubic') #利用xnew和func函数生成ynew,xnew数量等于ynew数量 ynew = func(xnew) # 原始折线 plt.plot(x, y, "r", linewidth=1) #平滑处理后曲线 plt.plot(xnew,ynew) #设置x,y轴代表意思 plt.xlabel("The distance between POI and user(km)") plt.ylabel("probability") #设置标题 plt.title("The content similarity of different distance") #设置x,y轴的坐标范围 plt.xlim(0,10,8) plt.ylim(0,1) plt.show()
绘制后的曲线,红色是未进行平滑处理的折线,蓝色是进行平滑处理之后的曲线
注意事项
1.x, y为原来的数据(少量)
2.xnew为一个数组,条件:x⊆⊆xnew
如:x的最小值为-2.931,最大值为10.312;则xnew的左边界要小于-2.931,右边界要大于10.312。当然也最好注意一下间距,最好小于x中的精度
3.func为函数,里面的参数x、y、kind,x,y就是原数据的x,y,kind为需要指定的方法
4.ynew需要通过xnew数组和func函数来生成,理论上xnew数组内的值越多,生成的曲线越平滑
本文python利用插值法对折线进行平滑曲线处理到此结束。最可怕的不是有人比你优秀,而是比你优秀的人还比你更努力。小编再次感谢大家对我们的支持!