Python学习笔记之迭代器和生成器用法实例详解

我们来到郊外。啊,这是多美的 "绿毯 "呀!绿油油的,上面还挂着一颗颗晶莹的 "珍珠 ",太阳升起来, "珍珠 "就发出了彩虹似的光芒,不一会儿就消失了。我想:小 "珍珠 "一定是架起彩虹桥去太阳神的皇宫了。这时,一股股幽香扑入我的鼻中,好香啊,走,去瞧瞧。我们先来到一株红梅前,那梅花正开得灿烂,并且还散出阵阵清香。梅花的颜色也许只有九天的织女用早晨的红霞和晴午的白云在天机上织的轻绢,才可以比拟吧。我们又来到迎春花旁,迎春花正在开花。

本文实例讲述了Python学习笔记之迭代器和生成器用法。分享给大家供大家参考,具体如下:

迭代器和生成器

迭代器

  • 每次可以返回一个对象元素的对象,例如返回一个列表。我们到目前为止使用的很多内置函数(例如 enumerate)都会返回一个迭代器。
  • 是一种表示数据流的对象。这与列表不同,列表是可迭代对象,但不是迭代器,因为它不是数据流。

生成器

  • 是使用函数创建迭代器的简单方式。也可以使用类定义迭代器

下面是一个叫做 my_range 的生成器函数,它会生成一个从 0 到 (x - 1) 的数字流:

def my_range(x):
  i = 0
  while i < x:
    yield i
    i += 1

该函数使用了 yield 而不是关键字 return。这样使函数能够一次返回一个值,并且每次被调用时都从停下的位置继续。关键字 yield 是将生成器与普通函数区分开来的依据。

因为上述代码会返回一个迭代器,因此我们可以将其转换为列表或用 for 循环遍历它,以查看其内容。例如,下面的代码:

for x in my_range(5):
  print(x)

输出如下:

0
1
2
3
4

为何要使用生成器?

  • 生成器是构建迭代器的 “懒惰” 方式。当内存不够存储完整实现的列表时,或者计算每个列表元素的代价很高,你希望尽量推迟计算时,就可以使用生成器。但是这些元素只能遍历一次。
  • 由于使用生成器是一次处理一个数据,在内存和存储的需求上会比使用list方式直接全部生成再存储节省很多资源。由此区别,在处理大量数据时,经常使用生成器初步处理数据后,再进行长期存储,而不是使用 list。
  • 因为无论使用生成器还是 list,都是使用过就要丢弃的临时数据。既然功能和结果一样,那就不如用生成器。
  • 但是生成器也有自己的局限,它产生的数据不能回溯,不像list可以任意选择。

迭代器和生成器[相关练习]

请自己写一个效果和内置函数 enumerate 一样的生成器函数。如下所示地调用该函数:

lessons = ["Why Python Programming", "Data Types and Operators", "Control Flow", "Functions", "Scripting"]
for i, lesson in my_enumerate(lessons, 1):
  print("Lesson {}: {}".format(i, lesson))

应该会输出:

Lesson 1: Why Python Programming
Lesson 2: Data Types and Operators
Lesson 3: Control Flow
Lesson 4: Functions
Lesson 5: Scripting

解决方案:

lessons = ["Why Python Programming", "Data Types and Operators", "Control Flow", "Functions", "Scripting"]
def my_enumerate(iterable, start=0):
  # Implement your generator function here
  i = start
  for element in iterable:
    yield i, element
    i += 1
for i, lesson in my_enumerate(lessons, 1):
  print("Lesson {}: {}".format(i, lesson))

如果可迭代对象太大,无法完整地存储在内存中(例如处理大型文件时),每次能够使用一部分很有用。实现一个生成器函数 chunker,接受一个可迭代对象并每次生成指定大小的部分数据。如下所示地调用该函数:

for chunk in chunker(range(25), 4):
  print(list(chunk))

应该会输出:

[0, 1, 2, 3]
[4, 5, 6, 7]
[8, 9, 10, 11]
[12, 13, 14, 15]
[16, 17, 18, 19]
[20, 21, 22, 23]
[24]

解决方案:

def chunker(iterable, size):
  for i in range(0, len(iterable), size):
    yield iterable[i:i + size]
for chunk in chunker(range(25), 4):
  print(list(chunk))

学习参考:

https://www.python.org/dev/peps/pep-0257/

https://docs.python.org/3/tutorial/classes.html#iterators

https://softwareengineering.stackexchange.com/questions/290231/when-should-i-use-a-generator-and-when-a-list-in-python/290235

https://stackoverflow.com/questions/312443/how-do-you-split-a-list-into-evenly-sized-chunks

希望本文所述对大家Python程序设计有所帮助。

以上就是Python学习笔记之迭代器和生成器用法实例详解。欲望就是这样的东西:你越得到它就越感到不足,你越失去它就越感到知足。更多关于Python学习笔记之迭代器和生成器用法实例详解请关注haodaima.com其它相关文章!

标签: 迭代