详解Pytorch 使用Pytorch拟合多项式(多项式回归)

花开花谢,人来又走,夕阳西下,人去楼空,早已物是人非矣。也许,这就是结局,可我不曾想过结局是这样;也许,这就是人生的意义,可我不曾想竟是生离死别。

使用Pytorch来编写神经网络具有很多优势,比起Tensorflow,我认为Pytorch更加简单,结构更加清晰。

希望通过实战几个Pytorch的例子,让大家熟悉Pytorch的使用方法,包括数据集创建,各种网络层结构的定义,以及前向传播与权重更新方式。

比如这里给出

很显然,这里我们只需要假定

这里我们只需要设置一个合适尺寸的全连接网络,根据不断迭代,求出最接近的参数即可。

但是这里需要思考一个问题,使用全连接网络结构是毫无疑问的,但是我们的输入与输出格式是什么样的呢?

只将一个x作为输入合理吗?显然是不合理的,因为每一个神经元其实模拟的是wx+b的计算过程,无法模拟幂运算,所以显然我们需要将x,x的平方,x的三次方,x的四次方组合成一个向量作为输入,假设有n个不同的x值,我们就可以将n个组合向量合在一起组成输入矩阵。

这一步代码如下:

def make_features(x): 
 x = x.unsqueeze(1) 
 return torch.cat([x ** i for i in range(1,4)] , 1) 

我们需要生成一些随机数作为网络输入:

def get_batch(batch_size=32): 
 random = torch.randn(batch_size) 
 x = make_features(random) 
 '''Compute the actual results''' 
 y = f(x) 
 if torch.cuda.is_available(): 
  return Variable(x).cuda(), Variable(y).cuda() 
 else: 
  return Variable(x), Variable(y) 

其中的f(x)定义如下:

w_target = torch.FloatTensor([0.5,3,2.4]).unsqueeze(1) 
b_target = torch.FloatTensor([0.9]) 
 
def f(x): 
 return x.mm(w_target)+b_target[0] 

接下来定义模型:

class poly_model(nn.Module): 
 def __init__(self): 
  super(poly_model, self).__init__() 
  self.poly = nn.Linear(3,1) 
 
 def forward(self, x): 
  out = self.poly(x) 
  return out 
if torch.cuda.is_available(): 
 model = poly_model().cuda() 
else: 
 model = poly_model() 

接下来我们定义损失函数和优化器:

criterion = nn.MSELoss() 
optimizer = optim.SGD(model.parameters(), lr = 1e-3) 

网络部件定义完后,开始训练:

epoch = 0 
while True: 
 batch_x,batch_y = get_batch() 
 output = model(batch_x) 
 loss = criterion(output,batch_y) 
 print_loss = loss.data[0] 
 optimizer.zero_grad() 
 loss.backward() 
 optimizer.step() 
 epoch+=1 
 if print_loss < 1e-3: 
  break 

到此我们的所有代码就敲完了,接下来我们开始详细了解一下其中的一些代码。

在make_features()定义中,torch.cat是将计算出的向量拼接成矩阵。unsqueeze是作一个维度上的变化。

get_batch中,torch.randn是产生指定维度的随机数,如果你的机器支持GPU加速,可以将Variable放在GPU上进行运算,类似语句含义相通。

x.mm是作矩阵乘法。

模型定义是重中之重,其实当你掌握Pytorch之后,你会发现模型定义是十分简单的,各种基本的层结构都已经为你封装好了。所有的层结构和损失函数都来自torch.nn,所有的模型构建都是从这个基类 nn.Module继承的。模型定义中,__init__与forward是有模板的,大家可以自己体会。

nn.Linear是做一个线性的运算,参数的含义代表了输入层与输出层的结构,即3*1;在训练阶段,有几行是Pytorch不同于别的框架的,首先loss是一个Variable,通过loss.data可以取出一个Tensor,再通过data[0]可以得到一个int或者float类型的值,我们才可以进行基本运算或者显示。每次计算梯度之前,都需要将梯度归零,否则梯度会叠加。个人觉得别的语句还是比较好懂的,如果有疑问可以在下方评论。

下面是我们的拟合结果

其实效果肯定会很好,因为只是一个非常简单的全连接网络,希望大家通过这个小例子可以学到Pytorch的一些基本操作。往后我们会继续更新,完整代码请戳,https://github.com/ZhichaoDuan/PytorchCourse

以上就是详解Pytorch 使用Pytorch拟合多项式(多项式回归)。除了少许的天份之外,大多是靠努力得来的“三分天才,七分努力。”是成功不变的法则,一个不愿或不肯努力的人,比起原地踏步,还要糟糕,所以要好好把握一分一秒的时刻,作为迈向下一步的准备,如此才能扎实稳固。更多关于详解Pytorch 使用Pytorch拟合多项式(多项式回归)请关注haodaima.com其它相关文章!

标签: Pytorch