pandas DataFrame行或列的删除方法的实现示例

伤心了难过了,一个人静静,不要在任何人面前掉眼泪,我不能原谅我的懦弱。经常笑,学会向比自己小的人称哥,以保持年轻心态。

此文我们继续围绕DataFrame介绍相关操作。

平时在用DataFrame时候,删除操作用的不太多,基本是从源DataFrame中筛选数据,组成一个新的DataFrame再继续操作。

1. 删除DataFrame某一列

这里我们继续用上一节产生的DataFrame来做例子,原DataFrame如下:

我们使用drop()函数,此函数有一个列表形参labels,写的时候可以加上labels=[xxx],也可以不加,列表内罗列要删除行或者列的名称,默认是行名称,如果要删除列,则要增加参数axis=1,操作如下:

#pd.__version__ =='0.18.0'
#drop columns
test_dict_df.drop(['id'],axis=1)
#test_dict_df.drop(columns=['id']) # official operation, maybe my pandas version needs update!

结果如下,对于上面的代码,官方好代码教程文档中给出了columns=['name'],但是在我测试的时候会报错,我用的python3,pandas版本为0.18,可能是pandas版本太老的缘故。

这里注意输出的结果是执行此方法的结果,而不是输出test_dict_df的结果,是因为方法默认的并不是在本身执行操作,这时候输出test_dict_df输出的仍然是没有进行删除操作的原DataFrame,如果你想在原DataFrame上进行操作,需要加上inplace=True,等价于在操作完再赋值给本身:

test_dict_df.drop(['id'],axis=1,inplace=True)
# test_dict_df = test_dict_df.drop(['id'],axis=1)

2. 删除DataFrame某一行

删除某一行,在上面删除列操作的时候也稍有提及,如果不加axis=1,则默认按照行号进行删除,例如要删除第0行和第4行:

test_dict_df.drop([0,4])

同理,你要在源DataFrame上进行操作就得加上inplace参数,否则不会在test_dict_df上改动。

当然,如果你的DataFrame有很多级,你可以加上level参数,这里就不多赘述了。

到此这篇关于pandas DataFrame行或列的删除方法的实现示例就介绍到这了。人生是一个赌场,我们随时都在下注,或输或赢,或悲或喜,没有一种微笑可以永恒,没有一种哭泣非要长久。有时候,是眼泪清晰了我们的视线,是困苦拓宽了我们的心胸。不要在意脚下的那些坎坷,它们都是铺垫你生命高度的基石。更多相关pandas DataFrame行或列的删除方法的实现示例内容请查看相关栏目,小编编辑不易,再次感谢大家的支持!

标签: pandas DataFrame