关于杨辉三角是什么东西,右转维基百科:杨辉三角
稍微看一下直观一点的图:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1
杨辉三角有以下几个特点:
每一项的值等于他左上角的数和右上角的数的和,如果左上角或者右上角没有数字,就按0计算。
第N层项数总比N-1层多1个
计算第N层的杨辉三角,必须知道N-1层的数字,然后将相邻2项的数字相加,就能得到下一层除了最边上2个1的所有数字。 听起来有点像递归的思想,我们不妨假设我们已经知道N-1层的数字,来计算一下N层的数字吧。
def _yanghui_trangle(n, result):
if n == 1:
return [1]
else:
return [sum(i) for i in zip([0] + result, result + [0])]
上面代码中,result表示N-1层杨辉三角的数字。实习上,我们在列表2端各补了一个0,然后计算相邻项的和,就可以直接得到结果。
稍微完善一下代码:
def yanghui_trangle(n):
def _yanghui_trangle(n, result):
if n == 1:
return [1]
else:
return [sum(i) for i in zip([0] + result, result + [0])]
pre_result = []
for i in xrange(n):
pre_result = _yanghui_trangle(i + 1, pre_result)
yield pre_resultif __name__ == "__main__":
for line in yanghui_trangle1(5):
print line
_yanghui_trangle可以用lambda的方式简写,但是可读性感觉会变差,所以还是保持现状好了。
tips: 上面的程序并没有考虑数据格式化的问题,也就是说输出不是完美的三角形。
鉴于最近在学习erlang,补上一个erlang版本的,性能上没有测试过,不过还是要惊叹于函数式语言的表达能力:
-module(yanghui).
-author(lfyzjck).
-export([triangle/1]).triangle_next(P) ->
lists:zipwith(fun(X, Y) -> X+Y end, [0|P], P ++ [0]).triangle(1) ->
[[1]];
triangle(N) ->
L = triangle(N - 1),
[H|_] = L,
[triangle_next(H)|L].
以上就是用Python输出一个杨辉三角的例子。这一路,很累很累,满身伤痕,懂得了谁才是你要珍惜的人,有些人注定是路人。更多关于用Python输出一个杨辉三角的例子请关注haodaima.com其它相关文章!