借口腾不出时间去健身的人,迟早会腾出时间去看病!善待自己,幸福无比,善待别人,快乐无比,善待生命,健康无比。梦想,就是这样一个词,不在于拥有,而在于追求。
本文实例讲述了python计算牛顿迭代多项式的方法。分享给大家供大家参考。具体实现方法如下:
''' p = evalPoly(a,xData,x). Evaluates Newton's polynomial p at x. The coefficient vector 'a' can be computed by the function 'coeffts'. a = coeffts(xData,yData). Computes the coefficients of Newton's polynomial. ''' def evalPoly(a,xData,x): n = len(xData) - 1 # Degree of polynomial p = a[n] for k in range(1,n+1): p = a[n-k] + (x -xData[n-k])*p return p def coeffts(xData,yData): m = len(xData) # Number of data points a = yData.copy() for k in range(1,m): a[k:m] = (a[k:m] - a[k-1])/(xData[k:m] - xData[k-1]) return a
希望本文所述对大家的Python程序设计有所帮助。
本文python计算牛顿迭代多项式实例分析到此结束。没有我为您掌灯,您在往返家的路上,会觉得难过吗?小编再次感谢大家对我们的支持!