详解Python中数据处理的方法总结及如何实现

背景 数据增强作为前处理的关键步骤,在整个计算机视觉中有着具足轻重的地位; 数据增强往往是决定数据集质量的关键,主要用于数据增广,在基于深度学习的任务中,数据的

背景

数据增强作为前处理的关键步骤,在整个计算机视觉中有着具足轻重的地位;

数据增强往往是决定数据集质量的关键,主要用于数据增广,在基于深度学习的任务中,数据的多样性和数量往往能够决定模型的上限;

本次记录主要是对数据增强中一些方法的源码实现;

常用数据增强方法

首先如果是使用Pytorch框架,其内部的torchvision已经包装好了数据增强的很多方法;

from torchvision import transforms

data_aug = transforms.Compose[
    transforms.Resize(size=240),
    transforms.RandomHorizontalFlip(0.5),
    transforms.ToTensor()
]

接下来自己实现一些主要的方法;

常见的数据增强方法有:Compose、RandomHflip、RandomVflip、Reszie、RandomCrop、Normalize、Rotate、RandomRotate

1、Compose

作用:对多个方法的排序整合,并且依次调用;

# 排序(compose)
class Compose(object):
    def __init__(self, transforms):
        self.transforms = transforms
    def __call__(self, img):
        for t in self.transforms:
            img = t(img)    # 通过循环不断调用列表中的方法
        return img

2、RandomHflip

作用:随机水平翻转;

# 随机水平翻转(random h flip)
class RandomHflip(object):
    def __call__(self, image):
        if random.randint(2):
            return cv2.flip(image, 1)
        else:
            return image

通过随机数0或1,实现对图像可能反转或不翻转;

3、RandomVflip

作用:随机垂直翻转

class RandomVflip(object):
    def __call__(self, image):
        if random.randint(2):
            return cv2.flip(image, 0)
        else:
            return image

4、RandomCrop

作用:随机裁剪;

# 缩放(scale)
def scale_down(src_size, size):
    w, h = size
    sw, sh = src_size
    if sh < h:
        w, h = float(w * sh) / h, sh
    if sw < w:
        w, h = sw, float(h * sw) / w
    return int(w), int(h)
    
# 固定裁剪(fixed crop)
def fixed_crop(src, x0, y0, w, h, size=None):
    out = src[y0:y0 + h, x0:x0 + w]
    if size is not None and (w, h) != size:
        out = cv2.resize(out, (size[0], size[1]), interpolation=cv2.INTER_CUBIC)
    return out

# 随机裁剪(random crop)
class RandomCrop(object):
    def __init__(self, size):
        self.size = size
    def __call__(self, image):
        h, w, _ = image.shape
        new_w, new_h = scale_down((w, h), self.size)
        if w == new_w:
            x0 = 0
        else:
            x0 = random.randint(0, w - new_w)
        if h == new_h:
            y0 = 0
        else:
            y0 = random.randint(0, h - new_h)

​​​​​​​        out = fixed_crop(image, x0, y0, new_w, new_h, self.size)
        return out

5、Normalize

作用:对图像数据进行正则化,也就是减均值除方差的作用;

# 正则化(normalize)
class Normalize(object):
    def __init__(self,mean, std):
        '''
        :param mean: RGB order
        :param std:  RGB order
        '''
        self.mean = np.array(mean).reshape(3,1,1)
        self.std = np.array(std).reshape(3,1,1)
    def __call__(self, image):
        '''
        :param image:  (H,W,3)  RGB
        :return:
        '''
        return (image.transpose((2, 0, 1)) / 255. - self.mean) / self.std

6、Rotate

作用:对图像进行旋转;

# 旋转(rotate)
def rotate_nobound(image, angle, center=None, scale=1.):
    (h, w) = image.shape[:2]
    # if the center is None, initialize it as the center of the image
    if center is None:
        center = (w // 2, h // 2)    # perform the rotation
    M = cv2.getRotationMatrix2D(center, angle, scale)    # 这里是实现得到旋转矩阵
    rotated = cv2.warpAffine(image, M, (w, h))            # 通过矩阵进行仿射变换
    return rotated

7、RandomRotate

作用:随机旋转,广泛适用于图像增强;

# 随机旋转(random rotate)
class FixRandomRotate(object):
	# 这里的随机旋转是指在0、90、180、270四个角度下的
    def __init__(self, angles=[0,90,180,270], bound=False):
        self.angles = angles
        self.bound = bound

    def __call__(self,img):
        do_rotate = random.randint(0, 4)
        angle=self.angles[do_rotate]
        if self.bound:
            img = rotate_bound(img, angle)
        else:
            img = rotate_nobound(img, angle)
        return img

8、Resize

作用:实现缩放;

# 大小重置(resize)
class Resize(object):
    def __init__(self, size, inter=cv2.INTER_CUBIC):
        self.size = size
        self.inter = inter

    def __call__(self, image):
        return cv2.resize(image, (self.size[0], self.size[0]), interpolation=self.inter)

其他数据增强方法

其他一些数据增强的方法大部分是特殊的裁剪;

1、中心裁剪

# 中心裁剪(center crop)
def center_crop(src, size):
    h, w = src.shape[0:2]
    new_w, new_h = scale_down((w, h), size)

    x0 = int((w - new_w) / 2)
    y0 = int((h - new_h) / 2)

    out = fixed_crop(src, x0, y0, new_w, new_h, size)
    return out

2、随机亮度增强

# 随机亮度增强(random brightness)
class RandomBrightness(object):
    def __init__(self, delta=10):
        assert delta >= 0
        assert delta <= 255
        self.delta = delta

    def __call__(self, image):
        if random.randint(2):
            delta = random.uniform(-self.delta, self.delta)
            image = (image + delta).clip(0.0, 255.0)
            # print('RandomBrightness,delta ',delta)
        return image

3、随机对比度增强

# 随机对比度增强(random contrast)
class RandomContrast(object):
    def __init__(self, lower=0.9, upper=1.05):
        self.lower = lower
        self.upper = upper
        assert self.upper >= self.lower, "contrast upper must be >= lower."
        assert self.lower >= 0, "contrast lower must be non-negative."

    # expects float image
    def __call__(self, image):
        if random.randint(2):
            alpha = random.uniform(self.lower, self.upper)
            # print('contrast:', alpha)
            image = (image * alpha).clip(0.0,255.0)
        return image

4、随机饱和度增强

# 随机饱和度增强(random saturation)
class RandomSaturation(object):
    def __init__(self, lower=0.8, upper=1.2):
        self.lower = lower
        self.upper = upper
        assert self.upper >= self.lower, "contrast upper must be >= lower."
        assert self.lower >= 0, "contrast lower must be non-negative."

    def __call__(self, image):
        if random.randint(2):
            alpha = random.uniform(self.lower, self.upper)
            image[:, :, 1] *= alpha
            # print('RandomSaturation,alpha',alpha)
        return image

5、边界扩充

# 边界扩充(expand border)
class ExpandBorder(object):
    def __init__(self,  mode='constant', value=255, size=(336,336), resize=False):
        self.mode = mode
        self.value = value
        self.resize = resize
        self.size = size

    def __call__(self, image):
        h, w, _ = image.shape
        if h > w:
            pad1 = (h-w)//2
            pad2 = h - w - pad1
            if self.mode == 'constant':
                image = np.pad(image, ((0, 0), (pad1, pad2), (0, 0)),
                               self.mode, constant_values=self.value)
            else:
                image = np.pad(image,((0,0), (pad1, pad2),(0,0)), self.mode)
        elif h < w:
            pad1 = (w-h)//2
            pad2 = w-h - pad1
            if self.mode == 'constant':
                image = np.pad(image, ((pad1, pad2),(0, 0), (0, 0)),
                               self.mode,constant_values=self.value)
            else:
                image = np.pad(image, ((pad1, pad2), (0, 0), (0, 0)),self.mode)
        if self.resize:
            image = cv2.resize(image, (self.size[0], self.size[0]),interpolation=cv2.INTER_LINEAR)
        return image

当然还有很多其他数据增强的方式,在这里就不继续做说明了;

拓展

除了可以使用Pytorch中自带的数据增强包之外,也可以使用imgaug这个包(一个基于数据处理的包、包含大量的数据处理方法,并且代码完全开源)

代码地址:https://github.com/aleju/imgaug

说明文档:https://imgaug.readthedocs.io/en/latest/index.html

强烈建议大家看看这个说明文档,其中的很多数据处理方法可以快速的应用到实际项目中,也可以加深对图像处理的理解;

到此这篇关于详解Python中数据处理的方法总结及实现的文章就介绍到这了,更多相关Python数据处理内容请搜索好代码网以前的文章或继续浏览下面的相关文章希望大家以后多多支持好代码网!